Skip to main content

Automated Detection of Adverse Drug Reactions from Social Media Posts with Machine Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10716))

Abstract

Adverse drug reactions can have serious consequences for patients. Social media is a source of information useful for detecting previously unknown side effects from a drug since users publish valuable information about various aspects of their lives, including health care. Therefore, detection of adverse drug reactions from social media becomes one of the actual tools for pharmacovigilance. In this paper, we focus on identification of adverse drug reactions from user reviews and formulate this problem as a binary classification task. We developed a machine learning classifier with a set of features for resolving this problem. Our feature-rich classifier achieves significant improvements on a benchmark dataset over baseline approaches and convolutional neural networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://diego.asu.edu/index.php?downloads=yes.

  2. 2.

    https://github.com/Ilseyar/adr_classification.

  3. 3.

    https://www.fda.gov/.

  4. 4.

    http://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CST/.

  5. 5.

    http://www.askapatient.com/.

  6. 6.

    https://www.dailystrength.org/.

  7. 7.

    https://www.drugs.com/.

  8. 8.

    http://jmcauley.ucsd.edu/data/amazon/.

  9. 9.

    http://www.webmd.com/.

  10. 10.

    https://pypi.python.org/pypi/tweet-preprocessor/0.4.0.

  11. 11.

    http://sideeffects.embl.de/.

  12. 12.

    http://www.consumerhealthvocab.org/.

  13. 13.

    https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CST/.

  14. 14.

    http://diego.asu.edu/Publications/ADRClassify.html.

  15. 15.

    https://bitbucket.org/asarker/adrbinaryclassifier/downloads/.

  16. 16.

    http://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CST/.

  17. 17.

    http://sideeffects.embl.de/.

References

  1. Onakpoya, I.J., Heneghan, C.J., Aronson, J.K.: Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med. 14(1), 10 (2016)

    Article  Google Scholar 

  2. Pirmohamed, M., James, S., Meakin, S., Green, C., Scott, A.K., Walley, T.J., Farrar, K., Park, B.K., Breckenridge, A.M.: Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 329(7456), 15–19 (2004)

    Article  Google Scholar 

  3. Classen, D.C., Pestotnik, S.L., Evans, R.S., Lloyd, J.F., Burke, J.P.: Adverse drug events in hospitalized patients: excess length of stay, extra costs, and attributable mortality. JAMA 277(4), 301–306 (1997)

    Article  Google Scholar 

  4. Lazarou, J., Pomeranz, B.H., Corey, P.N.: Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15), 1200–1205 (1998)

    Article  Google Scholar 

  5. Bates, D.W., Cullen, D.J., Laird, N., Petersen, L.A., Small, S.D., Servi, D., Laffel, G., Sweitzer, B.J., Shea, B.F., Hallisey, R., et al.: Incidence of adverse drug events and potential adverse drug events: implications for prevention. JAMA 274(1), 29–34 (1995)

    Article  Google Scholar 

  6. Sloane, R., Osanlou, O., Lewis, D., Bollegala, D., Maskell, S., Pirmohamed, M.: Social media and pharmacovigilance: a review of the opportunities and challenges. Br. J. Clin. Pharmacol. 80(4), 910–920 (2015)

    Article  Google Scholar 

  7. Tutubalina, E., Nikolenko, S.: Automated prediction of demographic information from medical user reviews. In: Prasath, R., Gelbukh, A. (eds.) MIKE 2016. LNCS, vol. 10089, pp. 174–184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58130-9_17

    Chapter  Google Scholar 

  8. Solovyev, V., Ivanov, V.: Knowledge-driven event extraction in Russian: corpus-based linguistic resources. Comput. Intell. Neurosci. 2016, 16 (2016)

    Article  Google Scholar 

  9. Sayfullina, L., Eirola, E., Komashinsky, D., Palumbo, P., Karhunen, J.: Android malware detection: building useful representations. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 201–206, December 2016

    Google Scholar 

  10. Ivanov, V., Tutubalina, E., Mingazov, N., Alimova, I.: Extracting aspects, sentiment and categories of aspects in user reviews about restaurants and cars. In: Proceedings of International Conference Dialog, vol. 2, pp. 22–34 (2015)

    Google Scholar 

  11. Murff, H.J., Patel, V.L., Hripcsak, G., Bates, D.W.: Detecting adverse events for patient safety research: a review of current methodologies. J. Biomed. Inform. 36(1), 131–143 (2003)

    Article  Google Scholar 

  12. Sarker, A., Ginn, R., Nikfarjam, A., O’Connor, K., Smith, K., Jayaraman, S., Upadhaya, T., Gonzalez, G.: Utilizing social media data for pharmacovigilance: a review. J. Biomed. Inform. 54, 202–212 (2015)

    Article  Google Scholar 

  13. Lardon, J., Abdellaoui, R., Bellet, F., Asfari, H., Souvignet, J., Texier, N., Jaulent, M.C., Beyens, M.N., Burgun, A., Bousquet, C.: Adverse drug reaction identification and extraction in social media: a scoping review. J. Med. Internet Res. 17(7), e171 (2015)

    Article  Google Scholar 

  14. Harpaz, R., Callahan, A., Tamang, S., Low, Y., Odgers, D., Finlayson, S., Jung, K., LePendu, P., Shah, N.H.: Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf. 37(10), 777–790 (2014)

    Article  Google Scholar 

  15. Harpaz, R., DuMouchel, W., Shah, N.H., Madigan, D., Ryan, P., Friedman, C.: Novel data-mining methodologies for adverse drug event discovery and analysis. Clin. Pharmacol. Ther. 91(6), 1010–1021 (2012)

    Article  Google Scholar 

  16. Sarker, A., Gonzalez, G.: Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J. Biomed. Inform. 53, 196–207 (2015)

    Article  Google Scholar 

  17. Karimi, S., Metke-Jimenez, A., Kemp, M., Wang, C.: Cadec: a corpus of adverse drug event annotations. J. Biomed. Inform. 55, 73–81 (2015)

    Article  Google Scholar 

  18. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  19. Sarker, A., Nikfarjam, A., Gonzalez, G.: Social media mining shared task workshop. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 581–592 (2016)

    Google Scholar 

  20. Rastegar-Mojarad, M., Komandur Elayavilli, R., Yu, Y., Hiu, H.: Detecting signals in noisy data-can ensemble classifiers help identify adverse drug reaction in tweets. In: Proceedings of the Social Media Mining Shared Task Workshop at the Pacific Symposium on Biocomputing (2016)

    Google Scholar 

  21. Zhang, Z., Nie, J., Zhang, X.: An ensemble method for binary classification of adverse drug reactions from social media. In: Proceedings of the Social Media Mining Shared Task Workshop at the Pacific Symposium on Biocomputing (2016)

    Google Scholar 

  22. Ofoghi, B., Siddiqui, S., Verspoor, K.: Read-BioMed-SS: adverse drug reaction classification of microblogs using emotional and conceptual enrichment. In: Proceedings of the Social Media Mining Shared Task Workshop at the Pacific Symposium on Biocomputing (2016)

    Google Scholar 

  23. Jonnagaddala, J., Jue, T.R., Dai, H.: Binary classification of twitter posts for adverse drug reactions. In: Proceedings of the Social Media Mining Shared Task Workshop at the Pacific Symposium on Biocomputing, pp. 4–8 (2016)

    Google Scholar 

  24. Egger, D., Uzdilli, F., Cieliebak, M., Derczynski, L.: Adverse drug reaction detection using an adapted sentiment classifier. In: Proceedings of the Social Media Mining Shared Task Workshop at the Pacific Symposium on Biocomputing (2016)

    Google Scholar 

  25. Ginn, R., Pimpalkhute, P., Nikfarjam, A., Patki, A., O’Connor, K., Sarker, A., Smith, K., Gonzalez, G.: Mining twitter for adverse drug reaction mentions: a corpus and classification benchmark. In: Proceedings of the Fourth Workshop on Building and Evaluating Resources for Health and Biomedical Text Processing. Citeseer (2014)

    Google Scholar 

  26. Yang, M., Wang, X., Kiang, M.Y.: Identification of consumer adverse drug reaction messages on social media. In: PACIS, vol. 193 (2013)

    Google Scholar 

  27. Bian, J., Topaloglu, U., Yu, F.: Towards large-scale twitter mining for drug-related adverse events. In: Proceedings of the 2012 International Workshop on Smart Health and Wellbeing, pp. 25–32. ACM (2012)

    Google Scholar 

  28. Patki, A., Sarker, A., Pimpalkhute, P., Nikfarjam, A., Ginn, R., O’Connor, K., Smith, K., Gonzalez, G.: Mining adverse drug reaction signals from social media: going beyond extraction. In: Proceedings of BioLinkSig 2014, pp. 1–8 (2014)

    Google Scholar 

  29. Gurulingappa, H., Mateen-Rajpu, A., Toldo, L.: Extraction of potential adverse drug events from medical case reports. J. Biomed. Semant. 3(1), 15 (2012)

    Article  Google Scholar 

  30. Liu, X., Liu, J., Chen, H.: Identifying adverse drug events from health social media: a case study on heart disease discussion forums. In: Zheng, X., Zeng, D., Chen, H., Zhang, Y., Xing, C., Neill, D.B. (eds.) ICSH 2014. LNCS, vol. 8549, pp. 25–36. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08416-9_3

    Google Scholar 

  31. Huynh, T., He, Y., Willis, A., Rüger, S.: Adverse drug reaction classification with deep neural networks. In: COLING (2016)

    Google Scholar 

  32. Gurulingappa, H., Rajput, A.M., Roberts, A., Fluck, J., Hofmann-Apitius, M., Toldo, L.: Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J. Biomed. Inform. 45(5), 885–892 (2012)

    Article  Google Scholar 

  33. Nikfarjam, A., Sarker, A., O’Connor, K., Ginn, R., Gonzalez, G.: Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J. Am. Med. Inform. Assoc. 22(3), 671–681 (2015)

    Google Scholar 

  34. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  35. Kiritchenko, S., Zhu, X., Mohammad, S.M.: Sentiment analysis of short informal texts. J. Artif. Intell. Res. 50, 723–762 (2014)

    Google Scholar 

  36. Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC, vol. 10, pp. 2200–2204 (2010)

    Google Scholar 

  37. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354. Association for Computational Linguistics (2005)

    Google Scholar 

  38. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)

    Google Scholar 

  39. Miftahutdinov, Z., Tutubalina, E., Tropsha, A.: Identifying disease-related expressions in reviews using conditional random fields. Komp’juternaja Lingvistika i Intellektual’nye Tehnologii 1(16), 155–166 (2017)

    Google Scholar 

  40. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  42. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  43. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

Download references

Acknowledgments

Work on problem definition and neural networks was carried out by Elena Tutubalina and supported by the Russian Science Foundation grant no. 15-11-10019. Other parts of this work were performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilseyar Alimova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alimova, I., Tutubalina, E. (2018). Automated Detection of Adverse Drug Reactions from Social Media Posts with Machine Learning. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2017. Lecture Notes in Computer Science(), vol 10716. Springer, Cham. https://doi.org/10.1007/978-3-319-73013-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73013-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73012-7

  • Online ISBN: 978-3-319-73013-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics