Multi-swarm Infrastructure for Swarm Versus Swarm Experimentation

  • Duane T. Davis
  • Timothy H. Chung
  • Michael R. Clement
  • Michael A. Day
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 6)

Abstract

This paper builds on previous Naval Postgraduate School success with large, autonomous swarms of fixed-wing unmanned aerial vehicles (UAV) to provide infrastructure for the simultaneous operation of multiple swarms. Developed in support of an event fostering swarm capability development through competition, the online referee, or Arbiter, monitors and evaluates multiple independent but interacting swarms. This Arbiter provides sensor modeling for both swarms, evaluation of inter-swarm interaction, scoring and enforcement of competition rules, and graphical display of game status. Arbiter capability is demonstrated through live-fly experiments and software-in-the-loop simulation. The Arbiter is also used to evaluate swarm behaviors that are developed for air-to-air pursuit of an opposing swarm with results provided in this paper.

References

  1. 1.
    Asada, M., Veloso, M., Kraetzschmar, G.K., Kitano, H.: Robocup: today and tomorrow. Exp. Robot. VI 250, 369 (1999)CrossRefMATHGoogle Scholar
  2. 2.
    Association for Unmanned Vehicle Systems International: 2016 Rules for AUVSI Seafarer Chapter’s 14th Annual Student UAS Competition (2016)Google Scholar
  3. 3.
    Bayraktar, S., Fainekos, G.E., Pappas, G.J.: Experimental cooperative control of fixed-wing unmanned aerial vehicles. In: 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 4, pp. 4292–4298. IEEE (2004)Google Scholar
  4. 4.
    Bekmezci, I., Sahingoz, O.K., Temel, Ş.: Flying ad-hoc networks (fanets): a survey. Ad Hoc Netw. 11(3), 1254–1270 (2013)CrossRefGoogle Scholar
  5. 5.
    Buehler, M., Iagnemma, K., Singh, S.: The 2005 DARPA Grand Challenge: The Great Robot Race, vol. 36. Springer Science & Business Media (2007)Google Scholar
  6. 6.
    Buehler, M., Iagnemma, K., Singh, S.: The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, vol. 56. Springer, Berlin (2009)Google Scholar
  7. 7.
    Chung, T.H., Jones, K.D., Day, M.A., Jones, M., Clement, M.: 50 vs. 50 by 2015: Swarm Vs. Swarm UAV Live-Fly Competition at the Naval Postgraduate School, pp. 1792–1811. AUVSI North America, Washington, DC (2013)Google Scholar
  8. 8.
    Chung, T.H., Clement, M., Day, M.A., Jones, K.D., Davis, D.T., Jones, M.: Live-fly, large-scale field experimentation for large numbers of fixed-wing UAVs. In: 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden (2016)Google Scholar
  9. 9.
    Cole, D.T., Sukkarieh, S., Göktogan, A.H., Stone, H., Hardwick-Jones, R.: The development of a real-time modular architecture for the control of uav teams. In: Field and Service Robotics, pp. 465–476. Springer, Berlin (2006)Google Scholar
  10. 10.
    Day, M.A., Clement, M.R., Russo, J.D., Davis, D., Chung, T.H.: Multi-UAV software systems and simulation architecture. In: 2015 International Conference on Unmanned Aerial Systems, pp. 426–435. IEEE, Denver, CO (2015)Google Scholar
  11. 11.
    Gupta, L., Jain, R., Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2015)CrossRefGoogle Scholar
  12. 12.
    Han, J., Xu, Y., Di, L., Chen, Y.: Low-cost multi-UAV technologies for contour mapping of nuclear radiation field. J. Intell. Robot. Syst. 70(1–4), 401–410 (2013)CrossRefGoogle Scholar
  13. 13.
    Hauert, S., Leven, S., Zufferey, J.C., Floreano, D.: The swarming micro air vehicle network (SMAVNET) project (2015)Google Scholar
  14. 14.
    Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The robot world cup initiative. In: Proceedings of the first international conference on Autonomous agents, pp. 340–347. ACM (1997)Google Scholar
  15. 15.
    Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.: Robocup: a challenge problem for AI. AI Mag. 18(1), 73 (1997)Google Scholar
  16. 16.
    Kownacki, C., Odziej, D.: Flocking algorithm for fixed-wing unmanned aerial vehicles. In: Bordeneuve-Guibé, J., Drouin, A., Roos, C. (eds.) Advances in Aerospace Guidance, Navigation and Control SE - 24. Flocking A, pp. 415–431. Springer International Publishing (2015). http://dx.doi.org/10.1007/978-3-319-17518-8_24
  17. 17.
    Madey, A.G., Madey, G.R.: Design and evaluation of UAV swarm command and control strategies. In: Proceedings of the Agent-Directed Simulation Symposium, p. 7. Society for Computer Simulation International (2013)Google Scholar
  18. 18.
    Noda, I., Stone, P.: The RoboCup soccer server and CMUnited clients: implemented infrastructure for MAS research. Auton. Agents Multi-Agent Syst. 7(1–2), 101–120 (2003)CrossRefGoogle Scholar
  19. 19.
    Nowak, D.J., Price, I., Lamont, G.B.: Self organized UAV swarm planning optimization for search and destroy using swarmfare simulation. In: 2007 Winter Simulation Conference, pp. 1315–1323. IEEE (2007)Google Scholar
  20. 20.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)Google Scholar
  21. 21.
    Reeder, M.: Special issue on the international micro air vehicle conference and flight competition 2014 (IMAV 2014). Int. Jo. Micro Air Veh. 6(4), i–ii (2014)Google Scholar
  22. 22.
    Roberts, J., Frousheger, D., Williams, B., Campbell, D., Walker, R.: How the outback challenge was won: the motivation for the UAV challenge outback rescue, the competition mission, and a summary of the six events (2016)Google Scholar
  23. 23.
    Stone, P.: Whats hot at robocup. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)Google Scholar
  24. 24.
    UAV Challenge. https://uavchallenge.org/ (2016). Accessed: 25 June 2016
  25. 25.
    Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N., Szörényi, T., Nepusz, T., Vicsek, T.: Outdoor flocking and formation flight with autonomous aerial robots. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3866–3873. IEEE (2014)Google Scholar
  26. 26.
    Yahyavi, A., Kemme, B.: Peer-to-peer architectures for massively multiplayer online games: a survey. ACM Comput. Surv. (CSUR) 46(1), 9 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Duane T. Davis
    • 1
  • Timothy H. Chung
    • 2
  • Michael R. Clement
    • 1
  • Michael A. Day
    • 3
  1. 1.Naval Postgraduate SchoolMontereyUSA
  2. 2.Defense Advanced Research Projects AgencyArlingtonUSA
  3. 3.Georgia Tech Research InstituteAtlantaUSA

Personalised recommendations