Human Responses to Stimuli Produced by Robot Swarms - the Effect of the Reality-Gap on Psychological State

  • Gaëtan Podevijn
  • Rehan O’Grady
  • Carole Fantini-Hauwel
  • Marco Dorigo
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 6)

Abstract

We study the reality-gap effect (the effect of the inherent discrepancy between simulation and reality) on the human psychophysiological state, workload and reaction time in the context of a human-swarm interaction scenario. In our experiments, 37 participants perform a supervision task (i.e., the participants have to respond to visual stimuli produced by a robot swarm) with a real robot swarm and with simulated robot swarms. Our results show that the reality-gap significantly affects the human psychophysiological state, workload and reaction time.

Notes

Acknowledgements

This work was partially supported by the European Research Council through the ERC Advanced Grant “E-SWARM: Engineering Swarm Intelligence Systems” (contract 246939) to Marco Dorigo. Rehan O’Grady and Marco Dorigo acknowledge support from the Belgian F.R.S.-FNRS.

References

  1. 1.
    Amraii, S.A., Walker, P., Lewis, M., Chakraborty, N., Sycara, K.: Explicit vs. tacit leadership in influencing the behavior of swarms. In: Proceedings of IEEE/RSJ International Conference on Robotics and Automation (ICRA), pp. 2209–2214. IEEE Press (2014)Google Scholar
  2. 2.
    Bashyal, S., Venayagamoorthy, G.: Human swarm interaction for radiation source search and localization. In: Swarm Intelligence Symposium, pp. 1–8. IEEE, St. Louis, MO, USA (2008)Google Scholar
  3. 3.
    De la Croix, J.P., Egerstedt, M.: Controllability characterizations of leader-based swarm interactions. In: AAAI Fall Symposium Series Technical Reports. AAAI Press (2012)Google Scholar
  4. 4.
    Fasola, J., Matarić, M.: A socially assistive robot exercise coach for the elderly. J. Human-Robot Interact. 2(2), 3–32 (2013)Google Scholar
  5. 5.
    Hart, S., Staveland, L.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183 (1988)CrossRefGoogle Scholar
  6. 6.
    Kidd, C., Breazeal, C.: Effect of a robot on user perceptions. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and System (IROS), vol. 4, pp. 3559–3564. IEEE Computer Society Press, Los Alamitos, CA (2004)Google Scholar
  7. 7.
    Kolling, A., Sycara, K., Nunnally, S., Lewis, M.: Human swarm interaction: an experimental study of two types of interaction with foraging swarms. J. Human-Robot Interact. 2(2), 103–128 (2013)Google Scholar
  8. 8.
    Kolling, A., Walker, P., Chakraborty, N., Sycara, K., Lewis, M.: Human interaction with robot swarms: a survey. IEEE Trans. Human-Mach. Syst. 46(1), 9–26 (2016)CrossRefGoogle Scholar
  9. 9.
    Lang, P.J.: Behavioral treatment and bio-behavioral assessment: computer applications. In: J.B. Sidowski, J.H. Johnson, T.H. Williams (eds.) Technology in Mental Health Care Delivery Systems, pp. 119–137. Ablex (1980)Google Scholar
  10. 10.
    Leite, I., Pereira, A., Martinho, C., Paiva, A.: Are emotional robots more fun to play with? In: Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive Communication (ROMAN), pp. 77–82. IEEE Press (2008)Google Scholar
  11. 11.
    Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65. Instituto Politècnico de Castelo Branco, Portugal (2009)Google Scholar
  12. 12.
    Nagavalli, S., Chien, S., Lewis, M., Chakraborty, N., Sycara, K.: Bounds of neglect benevolence in input timing for human interaction with robotic swarms. In: Proceedings of ACM/IEEE International Conference on Human-Robot Interaction, pp. 197–204. ACM, New York (2015)Google Scholar
  13. 13.
    Nunnally, S., Walker, P., Lewis, M., Kolling, A., Chakraborty, N., Sycara, K.: Connectivity differences between human operators of swarms and bandwidth limitations. In: Proceedings of the Third international conference on Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science, vol. 7677, pp. 713–720. Springer, Berlin, Germany (2012)Google Scholar
  14. 14.
    Pendleton, B., Goodrich, M.: Scalable human interaction with robotic swarms. In: Proceedings of the AIAA Infotech@Aerospace Conference, pp. 633–645. American Institute of Aeronautics and Astronautics, Va, USA (2013)Google Scholar
  15. 15.
    Pereira, A., Martinho, C., Leite, I., Paiva, A.: iCat, The chess player: the influence of embodiment in the enjoyment of a game. In: Proceedings of the 7th Iternational Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1253–1256. International Foundation for Autonomous Agents and Multiagent Systems (2008)Google Scholar
  16. 16.
    Podevijn, G., O’Grady, R., Fantini-Hauwel, C., Dorigo, M.: Investigating the effect of the reality gap on the human psychophysiological state in the context of human-swarm interaction. Peer J Comput. Sci. 2(e82) (2016)Google Scholar
  17. 17.
    Podevijn, G., O’Grady, R., Mathews, N., Gilles, A., Fantini-Hauwel, C., Dorigo, M.: Investigating the effect of increasing robot group sizes on the human psychophysiological state in the context of human-swarm interaction. Swarm Intell. 10(3) (2016)Google Scholar
  18. 18.
    Powers, A., Kiesler, S., Fussell, S., Torrey, C.: Comparing a computer agent with a humanoid robot. In: Proceedings of the 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 145–152. ACM, New York (2007)Google Scholar
  19. 19.
    Setter, T., Fouraker, A., Kawashima, H., Egerstedt, M.: Haptic interactions with multi-robot swarms using manipulability. J. Human-Robot Interact. 4(1), 60–74 (2015)CrossRefGoogle Scholar
  20. 20.
    Sweetser, P., Wyeth, P.: GameFlow: a model for evaluating player enjoyment in games. Comput. Entertain. (CIE) 3(3), 3–3 (2005)CrossRefGoogle Scholar
  21. 21.
    Wainer, J., Feil-Seifer, D., Shell, D., Matarić, M.: Embodiment and human-robot interaction: a task-based perspective. In: Proceedings of the 16th IEEE International Symposium on Robot and Human Interactive Communication (ROMAN), pp. 872–877. IEEE Press (2007)Google Scholar
  22. 22.
    Walker, P., Amraii, S., Lewis, M., Chakraborty, N., Sycara, K.: Human control of leader-based swarms. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2712–2717. IEEE Press (2013)Google Scholar
  23. 23.
    Walker, P., Nunnally, S., Lewis, M., Kolling, A., Chakraborty, N., Sycara, K.: Neglect benevolence in human-swarm interaction with communication latency. In: Proceedings of the Third International Conference on Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science, vol. 7677, pp. 662–669. Springer, Berlin, Germany (2012)Google Scholar
  24. 24.
    Wrobel, J., Wu, Y.H., Kerhervé, H., Kamali, L., Rigaud, A.S., Jost, C., Le Pévédic, B., Duhaut, D.: Effect of agent embodiment on the elder user enjoyment of a game. In: Proceedings of the 6th International Conference on Advances in Computer-Human Interactions (ACHI), pp. 162–167. IARIA XPS Press (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gaëtan Podevijn
    • 1
  • Rehan O’Grady
    • 1
  • Carole Fantini-Hauwel
    • 2
  • Marco Dorigo
    • 1
  1. 1.IRIDIA, Université Libre de BruxellesBruxellesBelgium
  2. 2.Research Center of Clinical Psychology, Psychopathology and PsychosomaticUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations