Advertisement

Evolving Behaviour Trees for Swarm Robotics

  • Simon Jones
  • Matthew Studley
  • Sabine Hauert
  • Alan Winfield
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 6)

Abstract

Controllers for swarms of robots are hard to design as swarm behaviour emerges from their interaction, and so controllers are often evolved. However, these evolved controllers are often difficult to understand, limiting our ability to predict swarm behaviour. We suggest behaviour trees are a good control architecture for swarm robotics, as they are comprehensible and promote modular reuse. We design a foraging task for kilobots and evolve a behaviour tree capable of performing that task, both in simulation and reality, and show the controller is compact and understandable.

References

  1. 1.
    Abiyev, R.H., Bektaş, Ş., Akkaya, N., Aytac, E.: Behaviour trees based decision making for soccer robots. Recent Advances in Mathematical Methods Intelligent Systems and Materials (2013)Google Scholar
  2. 2.
    Bagnell, J.A., Cavalcanti, F., Cui, L., Galluzzo, T., Hebert, M., Kazemi, M., Klingensmith, M., Libby, J., Liu, T.Y., Pollard, N., et al.: An integrated system for autonomous robotics manipulation. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2955–2962. IEEE (2012)Google Scholar
  3. 3.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)CrossRefGoogle Scholar
  4. 4.
    Catto, E.: Box2D: A 2D physics engine for games. World Wide Web electronic publication (2009). http://box2d.org/about
  5. 5.
    Champandard, A.: Behavior trees for next-gen game ai. In: Game developers conference, audio lecture (2007)Google Scholar
  6. 6.
    Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. Lond. B: Biol. Sci. 280(1755), 20122–20863 (2013)CrossRefGoogle Scholar
  7. 7.
    Colledanchise, M., Ogren, P.: How behavior trees modularize robustness and safety in hybrid systems. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 1482–1488. IEEE (2014)Google Scholar
  8. 8.
    Cutumisu, M., Szafron, D.: An architecture for game behavior ai: behavior multi-queues. In: AIIDE (2009)Google Scholar
  9. 9.
    Dill, K., Martin, L.: A game ai approach to autonomous control of virtual characters. In: Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) (2011)Google Scholar
  10. 10.
    Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 4 (2015)CrossRefGoogle Scholar
  11. 11.
    Dromey, R.G.: From requirements to design: formalizing the key steps. In: Proceedings of the First International Conference on Software Engineering and Formal Methods 2003, pp. 2–11. IEEE (2003)Google Scholar
  12. 12.
    Duarte, M., Gomes, J., Costa, V., Oliveira, S.M., Christensen, A.L.: Hybrid control for a real swarm robotics system in an intruder detection task. Applications of Evolutionary Computation, pp. 213–230. Springer, Cham (2016)CrossRefGoogle Scholar
  13. 13.
    Duarte, M., Oliveira, S.M., Christensen, A.L.: Hybrid control for large swarms of aquatic drones. In: Proceedings of the 14th International Conference on the Synthesis and Simulation of Living Systems, pp. 785–792. Citeseer (2014)Google Scholar
  14. 14.
    Fortin, F.A., Rainville, D., Gardner, M.A.G., Parizeau, M., Gagné, C., et al.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and challenges. Front. Robot. AI 3, 29 (2016)CrossRefGoogle Scholar
  16. 16.
    Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., et al.: Automode-chocolate: automatic design of control software for robot swarms. Swarm Intell. 9(2–3), 125–152 (2015)CrossRefGoogle Scholar
  17. 17.
    Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)CrossRefGoogle Scholar
  18. 18.
    Hauert, S., Winkler, L., Zufferey, J.C., Floreano, D.: Ant-based swarming with positionless micro air vehicles for communication relay. Swarm Intell. 2(2), 167–188 (2008)CrossRefGoogle Scholar
  19. 19.
    Hauert, S., Zufferey, J.C., Floreano, D.: Evolved swarming without positioning information: an application in aerial communication relay. Auton. Robot. 26(1), 21–32 (2009)CrossRefGoogle Scholar
  20. 20.
    Hauert, S., Zufferey, J.C., Floreano, D.: Reverse-engineering of artificially evolved controllers for swarms of robots. In: IEEE Congress on Evolutionary Computation 2009. CEC’09, pp. 55–61. IEEE (2009)Google Scholar
  21. 21.
    Hutchison, D.C.: Introducing BrilliantColor™ Technology. Texas Instruments white paper (2005)Google Scholar
  22. 22.
    Isla, D.: Handling complexity in the halo 2 ai. In: Game Developers Conference, vol. 12 (2005)Google Scholar
  23. 23.
    Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. Advances in Artificial Life, pp. 704–720. Springer, Berlin (1995)CrossRefGoogle Scholar
  24. 24.
    Jones, S., Studley, M., Winfield, A.: Mobile GPGPU acceleration of embodied robot simulation. In: Artificial Life and Intelligent Agents: First International Symposium, ALIA 2014, Bangor, UK, November 5–6, 2014. Revised Selected Papers, Communications in Computer and Information Science. Springer (2015)Google Scholar
  25. 25.
    Klöckner, A.: Interfacing behavior trees with the world using description logic. In: AIAA conference on Guidance, Navigation and Control, Boston (2013)Google Scholar
  26. 26.
    Koza, J.R.: On the programming of computers by means of natural selection. Genetic Programming, vol. 1. MIT press, Cambridge (1992)Google Scholar
  27. 27.
    Lim, C.U., Baumgarten, R., Colton, S.: Evolving behaviour trees for the commercial game defcon. Applications of Evolutionary Computation, pp. 100–110. Springer, Berlin (2010)CrossRefGoogle Scholar
  28. 28.
    Marzinotto, A., Colledanchise, M., Smith, C., Ogren, P.: Towards a unified behavior trees framework for robot control. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5420–5427. IEEE (2014)Google Scholar
  29. 29.
    Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: a survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)CrossRefGoogle Scholar
  30. 30.
    Ogren, P.: Increasing modularity of uav control systems using computer game behavior trees. In: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN (2012)Google Scholar
  31. 31.
    Pereira, R.d.P., Engel, P.M.: A framework for constrained and adaptive behavior-based agents (2015). arXiv preprint arXiv:1506.02312
  32. 32.
    Perez, D., Nicolau, M., O’Neill, M., Brabazon, A.: Evolving behaviour trees for the mario ai competition using grammatical evolution. Applications of Evolutionary Computation, pp. 123–132. Springer, Berlin (2011)CrossRefGoogle Scholar
  33. 33.
    Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: ACM SIGGRAPH Computer Graphics, vol. 21, pp. 25–34. ACM (1987)Google Scholar
  34. 34.
    Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: A low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3293–3298. IEEE (2012)Google Scholar
  35. 35.
    Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. Swarm Robotics, pp. 10–20. Springer, Berlin (2005)Google Scholar
  36. 36.
    Scheper, K.Y., Tijmons, S., de Visser, C.C., de Croon, G.C.: Behavior trees for evolutionary robotics. Artificial life (2015)Google Scholar
  37. 37.
    Shoulson, A., Garcia, F.M., Jones, M., Mead, R., Badler, N.I.: Parameterizing behavior trees. In: International Conference on Motion in Games, pp. 144–155. Springer (2011)Google Scholar
  38. 38.
    Winfield, A.E.: Towards an engineering science of robot foraging. Distributed Autonomous Robotic Systems 8, pp. 185–192. Springer, Berlin (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Simon Jones
    • 1
  • Matthew Studley
    • 1
  • Sabine Hauert
    • 1
  • Alan Winfield
    • 1
  1. 1.Bristol Robotics LaboratoryUniversity of the West of EnglandBristolUK

Personalised recommendations