Skip to main content

Decentralized Progressive Shape Formation with Robot Swarms

  • Chapter
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 6))

Abstract

We tackle the problem of achieving any given shape defined as a point cloud in a distributed manner with a swarm of robots. The contributions of this paper are (i) An algorithm that transforms a point cloud into a acyclic directed graph; (ii) A motion control law that, from the acyclic directed graph, allows a swarm of robots to achieve the target shape in a decentralized manner; and (iii) A theoretical model, which provides sufficient conditions on the convergence of the control law. The key idea of our approach is to achieve the target shape progressively by inducing an ordering among the robots. More precisely, we construct an acyclic directed graph so that any free robot (i.e., not part of the shape) finds its location with respect to the already placed robots. We prove that, for a 2D shape, it is sufficient for a free robot to calculate its location with respect to two already placed robots to achieve this objective. We validate our method through accurate physics-based simulations of non-holonomic robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our experiments we set \(Z=2^{16}-1\). With this value, 302 robots must simultaneously request the same label i to have a probability \(>0.5\) that at least two robots choose the same value for z. We observed that, on average, a robot has only about 8 neighbors; assuming that all of them request the same i simultaneously, the probability that at least two requests have the same value for z is \({\approx }4.27 \cdot 10^{-4}\).

  2. 2.

    http://www.argos-sim.info/.

References

  1. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart, R., Beardsley, P.: Multi-robot system for artistic pattern formation. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 4512–4517 (2011)

    Google Scholar 

  2. Anderson, B., Yu, C., Fidan, B., Hendrickx, J.: Rigid graph control architectures for autonomous formations. IEEE Control Syst. 28(6), 48–63 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beal, J.: Functional blueprints: an approach to modularity in grown systems. Swarm Intell. 5(3), 257–281 (2011)

    Article  Google Scholar 

  4. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., Mondada, F.: The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4187–4193. IEEE Press, Piscataway, NJ (2010)

    Google Scholar 

  5. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  6. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press (2009). http://coordinationbook.info

  7. Krick, L., Broucke, M.E., Francis, B.A.: Stabilisation of infinitesimally rigid formations of multi-robot networks. Int. J. Control 82(3), 423–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, L., Shell, D.A.: Distributed autonomous robotic systems: The 11th international symposium. In: M. Ani Hsieh, G. Chirikjian (eds.) Multi-Robot Formation Morphing through a Graph Matching Problem, pp. 291–306. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

    Google Scholar 

  9. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a Robot Designed for Education in Engineering. In: Gonçalves, P.J.S., Torres, P.J.D., Alves, C.M.O. (eds.) Proceedings of Robotica 2009–9th Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65. IPCB, Castelo Branco, Portugal (2006)

    Google Scholar 

  10. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  MATH  Google Scholar 

  12. Pinciroli, C., Gasparri, A., Garone, E., Beltrame, G.: Decentralized progressive shape formation with robot swarms: Proofs. Technical report, École Polytechnique de Montréal, Canada (2016). http://carlo.pinciroli.net/DARS2016/proofs.pdf

  13. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)

    Article  Google Scholar 

  14. Ravichandran, R., Gordon, G., Goldstein, S.: A scalable distributed algorithm for shape transformation in multi-robot systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 4188–4193 (2007)

    Google Scholar 

  15. Ren, W.: Consensus strategies for cooperative control of vehicle formations. IET Control Theory Appl. 1(2), 505–512 (2007)

    Article  Google Scholar 

  16. Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control of swarms of vehicles. Auton. Robots 17(2/3), 137–162 (2004)

    Article  Google Scholar 

  17. Spletzer, J., Fierro, R.: Optimal positioning strategies for shape changes in robot teams. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 742–747 (2005)

    Google Scholar 

  18. Støy, K.: Using situated communication in distributed autonomous mobile robots. Proceedings of the 7th Scandinavian Conference on Artificial Intelligence, pp. 44–52 (2001)

    Google Scholar 

  19. Williams, R., Gasparri, A., Priolo, A., Sukhatme, G.: Distributed combinatorial rigidity control in multi-agent networks. In: 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 6061–6066 (2013)

    Google Scholar 

  20. Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu, C.H., Nagpal, R.: Sensing-based shape formation on modular multi-robot systems: A theoretical study. Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems -. AAMAS ’08, vol. 1, pp. 71–78. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Pinciroli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinciroli, C., Gasparri, A., Garone, E., Beltrame, G. (2018). Decentralized Progressive Shape Formation with Robot Swarms. In: Groß, R., et al. Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-73008-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73008-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73006-6

  • Online ISBN: 978-3-319-73008-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics