Geometrical Study of a Quasi-spherical Module for Building Programmable Matter

  • Benoît Piranda
  • Julien Bourgeois
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 6)


The aim of the Claytronics project is to build spherical micro-robots, called catoms for Claytronics atoms able to stick to each other and able to move around each other. An ensemble of catoms is therefore a huge modular self-reconfigurable robot. However, the shape of these catoms have not been studied yet and remains a difficult problem as there are numerous constraints to respect. In this article, we propose a quasi-spherical catom which answers to all the constraints to build programmable matter.



This work has been funded by the Labex ACTION program (contract ANR-11-LABX-01-01) and ANR/RGC (contracts ANR-12-IS02-0004-01 and 3-ZG1F).


  1. 1.
    Bourgeois, J., Goldstein, S.C.: Distributed intelligent MEMS: progresses and perspectives. IEEE Syst. J. 9(3), 1057–1068 (2015)CrossRefGoogle Scholar
  2. 2.
    Bourgeois, J., Piranda, B., Naz, A., Lakhlef, H., Tucci, T., Mabed, H., Douthaut, D., Boillot, N.: Programmable matter as a cyber-physical conjugation. In: IEEE (ed.) IEEE International Conference on Systems, Man and Cybernetics (SMC) (2016)Google Scholar
  3. 3.
    Chirikjian, G.S.: Kinematics of a metamorphic robotic system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 449–455. IEEE (1994)Google Scholar
  4. 4.
    Davey, J., Kwok, N., Yim, M.: Emulating self-reconfigurable robots - design of the smores system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4464–4469. Vilamoura, Algarve, Portugal (2012)Google Scholar
  5. 5.
    Fukuda, T., Kawauchi, Y.: Cellular robotic system (cebot) as one of the realization of self-organizing intelligent universal manipulator. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 662–667 (1990)Google Scholar
  6. 6.
    Fukuda, T., Kawauchi, Y., Buss, M.: Communication method of cellular robotics cebot as a selforganizing robotic system. In: IEEE/RSJ International Workshop on Intelligent Robots and Systems’ 89. The Autonomous Mobile Robots and Its Applications. IROS’89. Proceedings, pp. 291–296. IEEE (1989)Google Scholar
  7. 7.
    Gilpin, K., Kotay, K., Rus, D.: Miche: modular shape formation by self-dissasembly. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 2241–2247 (2007)Google Scholar
  8. 8.
    Gilpin, K., Knaian, A., Rus, D.: Robot pebbles: one centimeter modules for programmable matter through self-disassembly. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2485–2492 (2010)Google Scholar
  9. 9.
    Karagozler, M.E., Thaker, A., Goldstein, S.C., Ricketts, D.S.: Electrostatic actuation and control of micro robots using a post-processed high-voltage soi cmos chip. In: IEEE International Symposium on Circuits and Systems (ISCAS) (2011)Google Scholar
  10. 10.
    Kirby, B., Campbell, J., Aksak, B., Pillai, P., Hoburg, J., Mowry, T., Goldstein, S.C.: Catoms: Moving robots without moving parts. In: Proceedings of the National Conference on Artificial Intelligence, vol. 20, p. 1730. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999 (2005)Google Scholar
  11. 11.
    Østergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the atron lattice-based self-reconfigurable robot. Auton. Robot. 21(2), 165–183 (2006)CrossRefGoogle Scholar
  12. 12.
    Piranda, B., Laurent, G.J., Bourgeois, J., Clévy, C., Le Fort-Piat, N.: A new concept of planar self-reconfigurable modular robot for conveying microparts. Mechatronics 23(7), 906–915 (2013). CrossRefGoogle Scholar
  13. 13.
    Reid, J.R., Vasilyev, V., Webster, R.T.: Building micro-robots: a path to sub-mm3 autonomous systems. In: Proceedings of nanotech (2008)Google Scholar
  14. 14.
    Romanishin, J., Gilpin, K., Rus, D.: M-blocks: momentum-driven, magnetic modular robots. In: IROS, pp. 4288–4295. IEEE (2013)Google Scholar
  15. 15.
    Stoy, K., Brandt, D., Christensen, D.J., Brandt, D.: Self-reconfigurable Robots: An Introduction. Mit Press, Cambridge (2010)Google Scholar
  16. 16.
    Vad, V., Csebfalvi, B., Rautek, P., Gr"oller, M.E.: Towards an unbiased comparison of cc, bcc, and fcc lattices in terms of prealiasing. Comput. Graph. Forum 33(3), 81–90 (2014)CrossRefGoogle Scholar
  17. 17.
    Yim, M., Duff, D.G., Roufas, K.D.: Polybot: a modular reconfigurable robot. In: IEEE International Conference on Robotics and Automation (ICRA) vol. 1, pp. 514–520 (2000)Google Scholar
  18. 18.
    Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)CrossRefGoogle Scholar
  19. 19.
    Yim, M., Zhang, Y., Lamping, J., Mao, E.: Distributed control for 3d metamorphosis. Auton. Robot. 10, 41–56 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Yim, M., White, P., Park, M., Sastra, J.: Modular self-reconfigurable robots. Encyclopedia of Complexity and Systems Science, pp. 5618–5631. Springer, New York (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of Bourgogne Franche-Comté (UBFC), University of Franche-Comté (UFC) FEMTO-ST InstituteMontbéliardFrance

Personalised recommendations