Advertisement

Evo-Bots: A Simple, Stochastic Approach to Self-assembling Artificial Organisms

  • Juan A. Escalera
  • Matthew J. Doyle
  • Francesco Mondada
  • Roderich Groß
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 6)

Abstract

This paper describes an alternative path towards artificial life—one by which simple modular robots with novel hybrid motion control are used to represent artificial organisms. We outline conceptually how such a system would work, and present a partial hardware implementation. The hardware, a set of self-reconfigurable modules called the evo-bots, operates on an air table. The modules use a stop-start anchor mechanism to either rest or move. In the latter case, they undergo semi-random motion. The modules can search for, harvest and exchange energy. In addition, they can self-assemble, and thereby form compound structures. Six prototypes of the evo-bot modules were built. We experimentally demonstrate their key functions, namely hybrid motion control, energy harvesting and sharing, and simple structure formation.

Notes

Acknowledgements

This research was supported by a Marie Curie European Reintegration Grant within the 7th European Community Framework Programme (grant no. PERG07-GA-2010-268354). It was also funded by the Engineering and Physical Sciences Research Council (EPSRC) through scholarship support (M. Doyle) and grant no. EP/K033948/1. In addition the authors would like to thank Paul Eastwood and Michael Port for their invaluable assistance in preparing the experimental environment.

References

  1. 1.
    Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Programmable parts: A demonstration of the grammatical approach to self-organization. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3684–3691. IEEE (2005)Google Scholar
  2. 2.
    Breivik, J.: Self-organization of template-replicating polymers and the spontaneous rise of genetic information. Entropy 3(4), 273–279 (2001)CrossRefGoogle Scholar
  3. 3.
    Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-free phenotype development. PLOS ONE 10(6), e0128,444 (2015)Google Scholar
  4. 4.
    Chirikjian, G.S., Zhou, Y., Suthakorn, J.: Self-replicating robots for lunar development. IEEE/ASME Trans. Mechatron. 7(4), 462–472 (2002)CrossRefGoogle Scholar
  5. 5.
    Cleland, C.E., Chyba, C.F.: Defining life. Origins of Life Evol. Biosph. 32(4), 387–393 (2002)CrossRefGoogle Scholar
  6. 6.
    Demir, N., Açıkmeşe, B.: Probabilistic density control for swarm of decentralized on-off agents with safety constraints. In: 2015 American Control Conference (ACC), pp. 5238–5244. IEEE (2015)Google Scholar
  7. 7.
    Ding, R., Eastwood, P., Mondada, F., Groß, R.: A stochastic self-reconfigurable modular robot with mobility control. In: TAROS 2012, vol. 7229 pp. 416–417. LNCS, Springer (2012)Google Scholar
  8. 8.
    Eiben, A.: Evosphere: The world of robot evolution. In: International Conference on Theory and Practice of Natural Computing, vol. 9477, pp. 3–19. LNCS, Springer (2015)Google Scholar
  9. 9.
    Eiben, A.E.: Grand challenges for evolutionary robotics. Front. Robot. AI 1(4), 1–2 (2014)MathSciNetGoogle Scholar
  10. 10.
    Escalera, J.A., Doyle, M.J., Mondada, F., Groß, R.: Online supplementary material (2016). http://naturalrobotics.group.shef.ac.uk/supp/2016-006/
  11. 11.
    Escalera, J.A., Mondada, F., Groß, R.: Evo-bots: A modular robotics platform with efficient energy sharing. In: Modular and Swarm Systems Workshop at IROS 2014 (2014). https://sites.google.com/site/iros2014mss/abstracts
  12. 12.
    Griffith, S., Goldwater, D., Jacobson, J.M.: Robotics: self-replication from random parts. Nature 437(7059), 636 (2005)CrossRefGoogle Scholar
  13. 13.
    Groß, R., Magnenat, S., Küchler, L., Massaras, V., Bonani, M., Mondada, F.: Towards an autonomous evolution of non-biological physical organisms. In: ECAL 2009, vol. 5777 pp. 173–180. LNAI, Springer (2011)Google Scholar
  14. 14.
    Haghighat, B., Droz, E., Martinoli, A.: Lily: A miniature floating robotic platform for programmable stochastic self-assembly. In: ICRA 2015, pp. 1941–1948. IEEE (2015)Google Scholar
  15. 15.
    Jacobson, H.: On models of reproduction. Am. Sci. 46(3), 255–284 (1958)Google Scholar
  16. 16.
    Kernbach, S., Meister, E., Schlachter, F., Jebens, K., Szymanski, M., Liedke, J., Laneri, D., Winkler, L., Schmickl, T., Thenius, R., et al.: Symbiotic robot organisms: replicator and symbrion projects. In: 8th Workshop on Performance Metrics for Intelligent Systems, pp. 62–69. ACM (2008)Google Scholar
  17. 17.
    Klavins, E.: Programmable self-assembly. IEEE Control Syst. 27(4), 43–56 (2007)CrossRefGoogle Scholar
  18. 18.
    Koshland, D.E.: The seven pillars of life. Science 295(5563), 2215–2216 (2002)CrossRefGoogle Scholar
  19. 19.
    Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)CrossRefGoogle Scholar
  20. 20.
    Miconi, T.: Evosphere: evolutionary dynamics in a population of fighting virtual creatures. In: 2008 IEEE Congress on Evolutionary Computation, pp. 3066–3073. IEEE (2008)Google Scholar
  21. 21.
    Penrose, L.S., Penrose, R.: A self-reproducing analogue. Nature 179(4571), 1183 (1957)CrossRefGoogle Scholar
  22. 22.
    Ruiz-Mirazo, K., Peretó, J., Moreno, A.: A universal definition of life: autonomy and open-ended evolution. Origins Life Evol. Biosph. 34(3), 323–346 (2004)CrossRefGoogle Scholar
  23. 23.
    Spector, L., Klein, J., Feinstein, M.: Division blocks and the open-ended evolution of development, form, and behavior. In: 9th Annual Conference on Genetic and Evolutionary Computation, pp. 316–323. ACM (2007)Google Scholar
  24. 24.
    Virgo, N., Fernando, C., Bigge, B., Husbands, P.: Evolvable physical self-replicators. Artif. Life 18(2), 129–142 (2012)CrossRefGoogle Scholar
  25. 25.
    Weel, B., Crosato, E., Heinerman, J., Haasdijk, E., Eiben, A.: A robotic ecosystem with evolvable minds and bodies. In: 2014 IEEE International Conference on Evolvable Systems (ICES), pp. 165–172. IEEE (2014)Google Scholar
  26. 26.
    White, P., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: ICRA 2004, vol. 3, pp. 2888–2893. IEEE (2004)Google Scholar
  27. 27.
    Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Robotics: self-reproducing machines. Nature 435(7039), 163–164 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Juan A. Escalera
    • 1
    • 2
  • Matthew J. Doyle
    • 1
  • Francesco Mondada
    • 3
  • Roderich Groß
    • 1
  1. 1.Department of Automatic Control and Systems EngineeringThe University of SheffieldSheffieldUK
  2. 2.Department of Automatics and Systems EngineeringUniversity Carlos III of MadridLeganésSpain
  3. 3.Laboratoire de Systèmes RobotiquesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations