Skip to main content

Evo-Bots: A Simple, Stochastic Approach to Self-assembling Artificial Organisms

  • Chapter
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 6))

Abstract

This paper describes an alternative path towards artificial life—one by which simple modular robots with novel hybrid motion control are used to represent artificial organisms. We outline conceptually how such a system would work, and present a partial hardware implementation. The hardware, a set of self-reconfigurable modules called the evo-bots, operates on an air table. The modules use a stop-start anchor mechanism to either rest or move. In the latter case, they undergo semi-random motion. The modules can search for, harvest and exchange energy. In addition, they can self-assemble, and thereby form compound structures. Six prototypes of the evo-bot modules were built. We experimentally demonstrate their key functions, namely hybrid motion control, energy harvesting and sharing, and simple structure formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The conceptual foundation is based on preliminary work presented in [13]. This work also presents simulation results and a preliminary module implementation (described further in [7]).

  2. 2.

    In [11] the authors presented preliminary work about the energy management system.

  3. 3.

    Maximum Power Point Tracking. Weak sources may collapse if they have to supply power that exceeds their limit. MPPT algorithms reach the maximum power point of a source and stay at this level. Therefore, the source supplies its maximum power in a safe way.

References

  1. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Programmable parts: A demonstration of the grammatical approach to self-organization. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3684–3691. IEEE (2005)

    Google Scholar 

  2. Breivik, J.: Self-organization of template-replicating polymers and the spontaneous rise of genetic information. Entropy 3(4), 273–279 (2001)

    Article  Google Scholar 

  3. Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-free phenotype development. PLOS ONE 10(6), e0128,444 (2015)

    Article  Google Scholar 

  4. Chirikjian, G.S., Zhou, Y., Suthakorn, J.: Self-replicating robots for lunar development. IEEE/ASME Trans. Mechatron. 7(4), 462–472 (2002)

    Article  Google Scholar 

  5. Cleland, C.E., Chyba, C.F.: Defining life. Origins of Life Evol. Biosph. 32(4), 387–393 (2002)

    Article  Google Scholar 

  6. Demir, N., Açıkmeşe, B.: Probabilistic density control for swarm of decentralized on-off agents with safety constraints. In: 2015 American Control Conference (ACC), pp. 5238–5244. IEEE (2015)

    Google Scholar 

  7. Ding, R., Eastwood, P., Mondada, F., Groß, R.: A stochastic self-reconfigurable modular robot with mobility control. In: TAROS 2012, vol. 7229 pp. 416–417. LNCS, Springer (2012)

    Google Scholar 

  8. Eiben, A.: Evosphere: The world of robot evolution. In: International Conference on Theory and Practice of Natural Computing, vol. 9477, pp. 3–19. LNCS, Springer (2015)

    Google Scholar 

  9. Eiben, A.E.: Grand challenges for evolutionary robotics. Front. Robot. AI 1(4), 1–2 (2014)

    MathSciNet  Google Scholar 

  10. Escalera, J.A., Doyle, M.J., Mondada, F., Groß, R.: Online supplementary material (2016). http://naturalrobotics.group.shef.ac.uk/supp/2016-006/

  11. Escalera, J.A., Mondada, F., Groß, R.: Evo-bots: A modular robotics platform with efficient energy sharing. In: Modular and Swarm Systems Workshop at IROS 2014 (2014). https://sites.google.com/site/iros2014mss/abstracts

  12. Griffith, S., Goldwater, D., Jacobson, J.M.: Robotics: self-replication from random parts. Nature 437(7059), 636 (2005)

    Article  Google Scholar 

  13. Groß, R., Magnenat, S., Küchler, L., Massaras, V., Bonani, M., Mondada, F.: Towards an autonomous evolution of non-biological physical organisms. In: ECAL 2009, vol. 5777 pp. 173–180. LNAI, Springer (2011)

    Google Scholar 

  14. Haghighat, B., Droz, E., Martinoli, A.: Lily: A miniature floating robotic platform for programmable stochastic self-assembly. In: ICRA 2015, pp. 1941–1948. IEEE (2015)

    Google Scholar 

  15. Jacobson, H.: On models of reproduction. Am. Sci. 46(3), 255–284 (1958)

    Google Scholar 

  16. Kernbach, S., Meister, E., Schlachter, F., Jebens, K., Szymanski, M., Liedke, J., Laneri, D., Winkler, L., Schmickl, T., Thenius, R., et al.: Symbiotic robot organisms: replicator and symbrion projects. In: 8th Workshop on Performance Metrics for Intelligent Systems, pp. 62–69. ACM (2008)

    Google Scholar 

  17. Klavins, E.: Programmable self-assembly. IEEE Control Syst. 27(4), 43–56 (2007)

    Article  Google Scholar 

  18. Koshland, D.E.: The seven pillars of life. Science 295(5563), 2215–2216 (2002)

    Article  Google Scholar 

  19. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)

    Article  Google Scholar 

  20. Miconi, T.: Evosphere: evolutionary dynamics in a population of fighting virtual creatures. In: 2008 IEEE Congress on Evolutionary Computation, pp. 3066–3073. IEEE (2008)

    Google Scholar 

  21. Penrose, L.S., Penrose, R.: A self-reproducing analogue. Nature 179(4571), 1183 (1957)

    Article  Google Scholar 

  22. Ruiz-Mirazo, K., Peretó, J., Moreno, A.: A universal definition of life: autonomy and open-ended evolution. Origins Life Evol. Biosph. 34(3), 323–346 (2004)

    Article  Google Scholar 

  23. Spector, L., Klein, J., Feinstein, M.: Division blocks and the open-ended evolution of development, form, and behavior. In: 9th Annual Conference on Genetic and Evolutionary Computation, pp. 316–323. ACM (2007)

    Google Scholar 

  24. Virgo, N., Fernando, C., Bigge, B., Husbands, P.: Evolvable physical self-replicators. Artif. Life 18(2), 129–142 (2012)

    Article  Google Scholar 

  25. Weel, B., Crosato, E., Heinerman, J., Haasdijk, E., Eiben, A.: A robotic ecosystem with evolvable minds and bodies. In: 2014 IEEE International Conference on Evolvable Systems (ICES), pp. 165–172. IEEE (2014)

    Google Scholar 

  26. White, P., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: ICRA 2004, vol. 3, pp. 2888–2893. IEEE (2004)

    Google Scholar 

  27. Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Robotics: self-reproducing machines. Nature 435(7039), 163–164 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a Marie Curie European Reintegration Grant within the 7th European Community Framework Programme (grant no. PERG07-GA-2010-268354). It was also funded by the Engineering and Physical Sciences Research Council (EPSRC) through scholarship support (M. Doyle) and grant no. EP/K033948/1. In addition the authors would like to thank Paul Eastwood and Michael Port for their invaluable assistance in preparing the experimental environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Escalera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Escalera, J.A., Doyle, M.J., Mondada, F., Groß, R. (2018). Evo-Bots: A Simple, Stochastic Approach to Self-assembling Artificial Organisms. In: Groß, R., et al. Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-73008-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73008-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73006-6

  • Online ISBN: 978-3-319-73008-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics