Advertisement

mm-Wave Front-End Design for Phased-Array Systems

  • Hao Gao
  • Marion Matters-Kammerer
  • Dusan Milosevic
  • Peter G. M. Baltus
Chapter
  • 615 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

In the previous chapters, a monolithic mm-wave sensor network was introduced. An on-chip wireless power receiver with an ultra-low-power receiver and transmitter front-end was presented. In this chapter, the base-station for monolithic sensor networks with phased-array architecture is analyzed and the key circuits are developed. By using a phased-array architecture, the base-station can achieve better sensitivity for the receiver part, and can also increase the transferred power density at the sensor node location for the transmitter part.

References

  1. 1.
    Y. Yu, P. Baltus, A. de Graauw, E. van der Heijden, C. Vaucher, A. van Roermund, A 60 GHz phase shifter integrated with LNA and PA in 65 nm CMOS for phased array systems. IEEE J. Solid State Circuits 45(9), 1697–1709 (2010)CrossRefGoogle Scholar
  2. 2.
    H. Friis, A note on a simple transmission formula. Proc. IRE 34(5), 254–256 (1946)CrossRefGoogle Scholar
  3. 3.
    P. Smulders, Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions. Commun. Mag. IEEE 40(1), 140–147 (2002)CrossRefGoogle Scholar
  4. 4.
    A. Natarajan, S. Reynolds, M.-D. Tsai, S. Nicolson, J.-H. Zhan, D.G. Kam, D. Liu, Y.-L. Huang, A. Valdes-Garcia, B. Floyd, A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid-State Circuits 46(5), 1059–1075 (2011)CrossRefGoogle Scholar
  5. 5.
    H. Gao, K. Ying, M.K. Matters-Kammerer, P. Harpe, B. Wang, B. Liu, W.A. Serdijn, P.G.M. Baltus, 60 GHz 5-bit digital controlled phase shifter in a digital 40 nm CMOS technology without ultra-thick metals. Electron. Lett. 52(19), 1611–1613 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Reynolds, A. Natarajan, M.-D. Tsai, S. Nicolson, J.-H. Zhan, D. Liu, D. Kam, O. Huang, A. Valdes-Garcia, B. Floyd, A 16-element phased-array receiver IC for 60-GHz communications in SiGe BiCMOS, in 2010 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2010), pp. 461–464Google Scholar
  7. 7.
    H. Veenstra, M. Notten, D. Zhao, J. Long, A 3-channel true-time delay transmitter for 60GHz radar-beamforming applications, in 2011 Proceedings of the ESSCIRC (ESSCIRC) (2011), pp. 143–146Google Scholar
  8. 8.
    X. Guan, H. Hashemi, A. Hajimiri, A fully integrated 24-GHz eight-element phased-array receiver in silicon. IEEE J. Solid-State Circuits 39(12), 2311–2320 (2004)CrossRefGoogle Scholar
  9. 9.
    H. Hashemi, X. Guan, A. Komijani, A. Hajimiri, A 24-GHz SiGe phased-array receiver-LO phase-shifting approach. IEEE Trans. Microwave Theory Tech. 53(2), 614–626 (2005)CrossRefGoogle Scholar
  10. 10.
    B. Wang, H. Gao, K. Ying, M.K. Matters-Kammerer, P. Baltus, A 60 GHz phased array system evaluation based on a 5-bit phase shifter in CMOS technology, in 2016 Symposium on Communications and Vehicular Technologies (SCVT) (2016), pp. 1–4Google Scholar
  11. 11.
    W.-T. Li, Y.-C. Chiang, J.-H. Tsai, H.-Y. Yang, J.-H. Cheng, T.-W. Huang, 60-GHz 5-bit phase shifter with integrated VGA phase-error compensation. IEEE Trans. Microwave Theory Tech. 61(3), 1224–1235 (2013)CrossRefGoogle Scholar
  12. 12.
    W.-J. Tseng, C.-S. Lin, Z.-M. Tsai, H. Wang, A miniature switching phase shifter in 0.18 μm CMOS, in Asia Pacific Microwave Conference, 2009 (APMC) (2009), pp. 2132–2135Google Scholar
  13. 13.
    S.Y. Kim, G. Rebeiz, A 4-Bit passive phase shifter for automotive radar applications in 0.13 μm CMOS, in Annual IEEE Compound Semiconductor Integrated Circuit Symposium, 2009 (CISC) (2009), pp. 1–4Google Scholar
  14. 14.
    C.-W. Wang, H.-S. Wu, C.-K. Tzuang, CMOS passive phase shifter with group-delay deviation of 6.3 ps at K-Band. IEEE Trans. Microwave Theory Tech. 59(7), 1778–1786 (2011)Google Scholar
  15. 15.
    K.-J. Koh, J. May, G. Rebeiz, A millimeter-wave (40–45 GHz) 16-element phased-array transmitter in 0.18-μm SiGe BiCMOS technology. IEEE J. Solid State Circuits 44(5), 1498–1509 (2009)Google Scholar
  16. 16.
    M.-D. Tsai, A. Natarajan, 60GHz passive and active RF-path phase shifters in silicon,” in IEEE Radio Frequency Integrated Circuits Symposium, 2009 (RFIC) (2009), pp. 223–226Google Scholar
  17. 17.
    H. Krishnaswamy, A. Valdes-Garcia, J.-W. Lai, A silicon-based, all-passive, 60 GHz, 4-element, phased-array beamformer featuring a differential, reflection-type phase shifter, in 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY) (2010), pp. 225–232Google Scholar
  18. 18.
    K. Ying, H. Gao, D. Milosevic, P. Baltus, A nonlinear transfer function based receiver for wideband interference suppression. J. Sens. 2017, 15 (2017)CrossRefGoogle Scholar
  19. 19.
    B.-W. Min, G. Rebeiz, Ka-Band BiCMOS 4-Bit phase shifter with integrated LNA for phased array T/R Modules, in IEEE/MTT-S International Microwave Symposium (2007), pp. 479–482Google Scholar
  20. 20.
    Y.-C. Chiang, W.-T. Li, J.-H. Tsai, T.-W. Huang, A 60GHz digitally controlled 4-bit phase shifter with 6-ps group delay deviation, in 2012 IEEE MTT-S International Microwave Symposium Digest (MTT) (2012), pp. 1–3Google Scholar
  21. 21.
    D.-W. Kang, H.D. Lee, C.-H. Kim, S. Hong, Ku-band MMIC phase shifter using a parallel resonator with 0.18 μm cmos technology. IEEE Trans. Microwave Theory Tech. 54(1), 294–301 (2006)Google Scholar
  22. 22.
    B.-W. Min, G. Rebeiz, Single-ended and differential Ka-Band BiCMOS phased array front-ends. IEEE J. Solid State Circuits 43(10), 2239–2250 (2008)CrossRefGoogle Scholar
  23. 23.
    H. Gao, K. Ying, M.K. Matters-Kammerer, P. Harpe, Q. Ma, A. van Roermund, P. Baltus, A 48-61 GHz LNA in 40-nm CMOS with 3.6 dB minimum NF employing a metal slotting method, in 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2016), pp. 154–157Google Scholar
  24. 24.
    M. Byung-Wook, G. Rebeiz, Ka-Band SiGe HBT low noise amplifier design for simultaneous noise and input power matching. IEEE Microwave Wireless Compon. Lett. 17(12), 891–893 (2007)CrossRefGoogle Scholar
  25. 25.
    G.D. Vendelin, A.M. Pavio, U.L. Rhode, Microwave Circuit Design Using Linear and Nonlinear Techniques. Wiley-Interscience; 2 edition (July 5, 2005)Google Scholar
  26. 26.
    P. Sakian, E. Janssen, A. van Roermund, R. Mahmoudi, Analysis and design of a 60 GHz wideband voltage-voltage transformer feedback LNA. IEEE Trans. Microwave Theory Tech. 60(3), 702–713 (2012)CrossRefGoogle Scholar
  27. 27.
    H.-H. Hsieh, P.-Y. Wu, C.-P. Jou, F.-L. Hsueh, G.-W. Huang, 60GHz high-gain low-noise amplifiers with a common-gate inductive feedback in 65nm CMOS, in 2011 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2011), pp. 1–4Google Scholar
  28. 28.
    S. Pellerano, Y. Palaskas, K. Soumyanath, A 64 GHz LNA with 15.5 dB gain and 6.5 dB NF in 90 nm CMOS. IEEE J. Solid State Circuits 43(7), 1542–1552 (2008)Google Scholar
  29. 29.
    J. Roderick, H. Krishnaswamy, K. Newton, H. Hashemi, Silicon-based ultra-wideband beam-forming. IEEE J. Solid State Circuits 41(8), 1726–1739 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hao Gao
    • 1
  • Marion Matters-Kammerer
    • 1
  • Dusan Milosevic
    • 1
  • Peter G. M. Baltus
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations