Batteryless mm-Wave Wireless Sensors pp 101-132 | Cite as
mm-Wave Front-End Design for Phased-Array Systems
Chapter
First Online:
- 615 Downloads
Abstract
In the previous chapters, a monolithic mm-wave sensor network was introduced. An on-chip wireless power receiver with an ultra-low-power receiver and transmitter front-end was presented. In this chapter, the base-station for monolithic sensor networks with phased-array architecture is analyzed and the key circuits are developed. By using a phased-array architecture, the base-station can achieve better sensitivity for the receiver part, and can also increase the transferred power density at the sensor node location for the transmitter part.
References
- 1.Y. Yu, P. Baltus, A. de Graauw, E. van der Heijden, C. Vaucher, A. van Roermund, A 60 GHz phase shifter integrated with LNA and PA in 65 nm CMOS for phased array systems. IEEE J. Solid State Circuits 45(9), 1697–1709 (2010)CrossRefGoogle Scholar
- 2.H. Friis, A note on a simple transmission formula. Proc. IRE 34(5), 254–256 (1946)CrossRefGoogle Scholar
- 3.P. Smulders, Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions. Commun. Mag. IEEE 40(1), 140–147 (2002)CrossRefGoogle Scholar
- 4.A. Natarajan, S. Reynolds, M.-D. Tsai, S. Nicolson, J.-H. Zhan, D.G. Kam, D. Liu, Y.-L. Huang, A. Valdes-Garcia, B. Floyd, A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid-State Circuits 46(5), 1059–1075 (2011)CrossRefGoogle Scholar
- 5.H. Gao, K. Ying, M.K. Matters-Kammerer, P. Harpe, B. Wang, B. Liu, W.A. Serdijn, P.G.M. Baltus, 60 GHz 5-bit digital controlled phase shifter in a digital 40 nm CMOS technology without ultra-thick metals. Electron. Lett. 52(19), 1611–1613 (2016)CrossRefGoogle Scholar
- 6.S. Reynolds, A. Natarajan, M.-D. Tsai, S. Nicolson, J.-H. Zhan, D. Liu, D. Kam, O. Huang, A. Valdes-Garcia, B. Floyd, A 16-element phased-array receiver IC for 60-GHz communications in SiGe BiCMOS, in 2010 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2010), pp. 461–464Google Scholar
- 7.H. Veenstra, M. Notten, D. Zhao, J. Long, A 3-channel true-time delay transmitter for 60GHz radar-beamforming applications, in 2011 Proceedings of the ESSCIRC (ESSCIRC) (2011), pp. 143–146Google Scholar
- 8.X. Guan, H. Hashemi, A. Hajimiri, A fully integrated 24-GHz eight-element phased-array receiver in silicon. IEEE J. Solid-State Circuits 39(12), 2311–2320 (2004)CrossRefGoogle Scholar
- 9.H. Hashemi, X. Guan, A. Komijani, A. Hajimiri, A 24-GHz SiGe phased-array receiver-LO phase-shifting approach. IEEE Trans. Microwave Theory Tech. 53(2), 614–626 (2005)CrossRefGoogle Scholar
- 10.B. Wang, H. Gao, K. Ying, M.K. Matters-Kammerer, P. Baltus, A 60 GHz phased array system evaluation based on a 5-bit phase shifter in CMOS technology, in 2016 Symposium on Communications and Vehicular Technologies (SCVT) (2016), pp. 1–4Google Scholar
- 11.W.-T. Li, Y.-C. Chiang, J.-H. Tsai, H.-Y. Yang, J.-H. Cheng, T.-W. Huang, 60-GHz 5-bit phase shifter with integrated VGA phase-error compensation. IEEE Trans. Microwave Theory Tech. 61(3), 1224–1235 (2013)CrossRefGoogle Scholar
- 12.W.-J. Tseng, C.-S. Lin, Z.-M. Tsai, H. Wang, A miniature switching phase shifter in 0.18 μm CMOS, in Asia Pacific Microwave Conference, 2009 (APMC) (2009), pp. 2132–2135Google Scholar
- 13.S.Y. Kim, G. Rebeiz, A 4-Bit passive phase shifter for automotive radar applications in 0.13 μm CMOS, in Annual IEEE Compound Semiconductor Integrated Circuit Symposium, 2009 (CISC) (2009), pp. 1–4Google Scholar
- 14.C.-W. Wang, H.-S. Wu, C.-K. Tzuang, CMOS passive phase shifter with group-delay deviation of 6.3 ps at K-Band. IEEE Trans. Microwave Theory Tech. 59(7), 1778–1786 (2011)Google Scholar
- 15.K.-J. Koh, J. May, G. Rebeiz, A millimeter-wave (40–45 GHz) 16-element phased-array transmitter in 0.18-μm SiGe BiCMOS technology. IEEE J. Solid State Circuits 44(5), 1498–1509 (2009)Google Scholar
- 16.M.-D. Tsai, A. Natarajan, 60GHz passive and active RF-path phase shifters in silicon,” in IEEE Radio Frequency Integrated Circuits Symposium, 2009 (RFIC) (2009), pp. 223–226Google Scholar
- 17.H. Krishnaswamy, A. Valdes-Garcia, J.-W. Lai, A silicon-based, all-passive, 60 GHz, 4-element, phased-array beamformer featuring a differential, reflection-type phase shifter, in 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY) (2010), pp. 225–232Google Scholar
- 18.K. Ying, H. Gao, D. Milosevic, P. Baltus, A nonlinear transfer function based receiver for wideband interference suppression. J. Sens. 2017, 15 (2017)CrossRefGoogle Scholar
- 19.B.-W. Min, G. Rebeiz, Ka-Band BiCMOS 4-Bit phase shifter with integrated LNA for phased array T/R Modules, in IEEE/MTT-S International Microwave Symposium (2007), pp. 479–482Google Scholar
- 20.Y.-C. Chiang, W.-T. Li, J.-H. Tsai, T.-W. Huang, A 60GHz digitally controlled 4-bit phase shifter with 6-ps group delay deviation, in 2012 IEEE MTT-S International Microwave Symposium Digest (MTT) (2012), pp. 1–3Google Scholar
- 21.D.-W. Kang, H.D. Lee, C.-H. Kim, S. Hong, Ku-band MMIC phase shifter using a parallel resonator with 0.18 μm cmos technology. IEEE Trans. Microwave Theory Tech. 54(1), 294–301 (2006)Google Scholar
- 22.B.-W. Min, G. Rebeiz, Single-ended and differential Ka-Band BiCMOS phased array front-ends. IEEE J. Solid State Circuits 43(10), 2239–2250 (2008)CrossRefGoogle Scholar
- 23.H. Gao, K. Ying, M.K. Matters-Kammerer, P. Harpe, Q. Ma, A. van Roermund, P. Baltus, A 48-61 GHz LNA in 40-nm CMOS with 3.6 dB minimum NF employing a metal slotting method, in 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2016), pp. 154–157Google Scholar
- 24.M. Byung-Wook, G. Rebeiz, Ka-Band SiGe HBT low noise amplifier design for simultaneous noise and input power matching. IEEE Microwave Wireless Compon. Lett. 17(12), 891–893 (2007)CrossRefGoogle Scholar
- 25.G.D. Vendelin, A.M. Pavio, U.L. Rhode, Microwave Circuit Design Using Linear and Nonlinear Techniques. Wiley-Interscience; 2 edition (July 5, 2005)Google Scholar
- 26.P. Sakian, E. Janssen, A. van Roermund, R. Mahmoudi, Analysis and design of a 60 GHz wideband voltage-voltage transformer feedback LNA. IEEE Trans. Microwave Theory Tech. 60(3), 702–713 (2012)CrossRefGoogle Scholar
- 27.H.-H. Hsieh, P.-Y. Wu, C.-P. Jou, F.-L. Hsueh, G.-W. Huang, 60GHz high-gain low-noise amplifiers with a common-gate inductive feedback in 65nm CMOS, in 2011 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2011), pp. 1–4Google Scholar
- 28.S. Pellerano, Y. Palaskas, K. Soumyanath, A 64 GHz LNA with 15.5 dB gain and 6.5 dB NF in 90 nm CMOS. IEEE J. Solid State Circuits 43(7), 1542–1552 (2008)Google Scholar
- 29.J. Roderick, H. Krishnaswamy, K. Newton, H. Hashemi, Silicon-based ultra-wideband beam-forming. IEEE J. Solid State Circuits 41(8), 1726–1739 (2006)CrossRefGoogle Scholar
Copyright information
© Springer International Publishing AG 2018