mm-Wave Low-Power Receiver

  • Hao Gao
  • Marion Matters-Kammerer
  • Dusan Milosevic
  • Peter G. M. Baltus
Part of the Analog Circuits and Signal Processing book series (ACSP)


In the previous chapters, the rectifier for an on-chip wireless power receiver is analyzed and the mm-wave rectifier is implemented together with on-chip antenna(s) and temperature-correlated sensor in 65 nm CMOS technology to demonstrate the possibility to realize fully monolithic sensor nodes on silicon. In order to provide sensor nodes with more functionality, an ultra-low-power receiver must be co-integrated with the wireless power receiver module to receive commands from the base-station. In this chapter, a mm-wave ultra-low-power receiver architecture is proposed and studied. An injection-locked oscillator based architecture is proposed and implemented in 65 nm CMOS technology.


  1. 1.
    Y. Wu, J. Linnartz, H. Gao, P. Baltus, J. Bergmans, System study of a 60 GHz wireless-powered monolithic sensor system, in 2011 8th International Conference on Information, Communications and Signal Processing (ICICS), December 2011, pp. 1–5Google Scholar
  2. 2.
    S. Drago, D. Leenaerts, F. Sebastiano, L. Breems, K. Makinwa, B. Nauta, A 2.4 GHz 830 pJ/bit duty-cycled wake-up receiver with − 82 dBm sensitivity for crystal-less wireless sensor nodes, in 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), February 2010, pp. 224–225Google Scholar
  3. 3.
    X. Huang, S. Rampu, X. Wang, G. Dolmans, H. de Groot, A 2.4 GHz/915 MHz 51 μW wake-up receiver with offset and noise suppression, in 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), February 2010, pp. 222–223Google Scholar
  4. 4.
    J. Ryu, M. Kim, J. Lee, B.-S. Kim, M.-Q. Lee, S. Nam, Low power OOK transmitter for wireless capsule endoscope, in IEEE/MTT-S International Microwave Symposium, 2007, June 2007, pp. 855–858Google Scholar
  5. 5.
    J. Liu, C. Li, L. Chen, Y. Xiao, J. Wang, H. Liao, R. Huang, An ultra-low power 400 MHz OOK transceiver for medical implanted applications, in 2011 Proceedings of the ESSCIRC (ESSCIRC), September 2011, pp. 175–178Google Scholar
  6. 6.
    P. Baltus, Minimum power design of RF front ends, Ph.D. dissertation, Eindhoven University of Technology, 2004Google Scholar
  7. 7.
    N. Roberts, D. Wentzloff, A 98 nW wake-up radio for wireless body area networks, in 2012 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2012, pp. 373–376Google Scholar
  8. 8.
    S. Oh, N. Roberts, D. Wentzloff, A 116 nW multi-band wake-up receiver with 31-bit correlator and interference rejection, in 2013 IEEE Custom Integrated Circuits Conference (CICC), September 2013, pp. 1–4Google Scholar
  9. 9.
    T. Wada, M. Ikebe, E. Sano, 60-GHz, 9-μW wake-up receiver for short-range wireless communications, in 2013 Proceedings of the ESSCIRC (ESSCIRC), September 2013, pp. 383–386Google Scholar
  10. 10.
    X. Li, P. Baltus, P. van Zeijl, D. Milosevic, A. van Roermund, A 73 to 83 GHz, 9-mW injection-locked oscillator in 65-nm CMOS technology, in 2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), January 2011, pp. 5–8Google Scholar
  11. 11.
    T.H. Lee, The Design of Low Noise Oscillators (Springer Science Business Media, Boston, 1999)Google Scholar
  12. 12.
    B. Razavi, RF Microelectronics 2nd edn. (Prentice Hall, Upper Saddle River, 2011)Google Scholar
  13. 13.
    M. Kennedy, H. Mo, X. Dong, Experimental characterization of Arnold tongues in injection-locked CMOS LC frequency dividers with tail and direct injection, in 2011 20th European Conference on Circuit Theory and Design (ECCTD), August 2011, pp. 484–487Google Scholar
  14. 14.
    Y. Liu, Z. Li, H. Gao, Q. Li, Z. Wang, A novel complementary push-push frequency doubler with negative resistor conversion gain enhancement. IEICE Electron. Express 14, 20170674 (2017)CrossRefGoogle Scholar
  15. 15.
    K.W. Li, L. Leung, K.N. Leung, Low power injection locked oscillators for MICS standard, in 2009. IEEE Biomedical Circuits and Systems Conference, 2009. BioCAS, November 2009, pp. 1–4Google Scholar
  16. 16.
    A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, A. Matsuzawa, A low phase noise quadrature injection locked frequency synthesizer for MM-wave applications. IEEE J. Solid-State Circuits 46(11), 2635–2649 (2011)CrossRefGoogle Scholar
  17. 17.
    J.-C. Chien, L.-H. Lu, Design of wide-tuning-range millimeter-wave CMOS VCO with a standing-wave architecture. IEEE J. Solid-State Circuits 42(9), 1942–1952 (2007)CrossRefGoogle Scholar
  18. 18.
    H. Gao, M.K. Matters-Kammerer, X. Li, D. Milosevic, A. van Roermund, P.G.M. Baltus, A 60-GHz injection locked oscillator for self-demodulation ultra-low power radio in 65-nm CMOS, in 2014 IEEE 21st Symposium on Communications and Vehicular Technology in the Benelux (SCVT), November 2014, pp. 90–93Google Scholar
  19. 19.
    B. Razavi, A study of injection locking and pulling in oscillators. IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004)CrossRefGoogle Scholar
  20. 20.
    Z. Chen, H. Gao, D.M.W. Leenaerts, D. Milosevic, P.G.M. Baltus, A 16–43 GHz low-noise amplifer with 2.5–4.0 dB noise figure, in 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), November 2016, pp. 349–352Google Scholar
  21. 21.
    C.P. John, W. Roger, Radio Frequency Integrated Circuit Design, 2nd edn. (Artech House, Norwood, 2010)Google Scholar
  22. 22.
    Z. Chen, H. Gao, R. van Dommele, D. Milosevic, P.G.M. Baltus, Design consideration of 60 GHz low power low-noise amplifier in 65 nm CMOS, in 2016 Symposium on Communications and Vehicular Technologies (SCVT), November 2016, pp. 1–4Google Scholar
  23. 23.
    K. Komoni, S. Sonkusale, G. Dawe, Fundamental performance limits and scaling of a CMOS passive double-balanced mixer, in 2008 Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, 2008. NEWCAS-TAISA 2008, June 2008, pp. 297–300Google Scholar
  24. 24.
    J. Lee, Y. Chen, Y. Huang, A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly. IEEE J. Solid-State Circuits 45(2), pp. 264–275 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Tomkins, R. Aroca, T. Yamamoto, S. Nicolson, Y. Doi, S. Voinigescu, A zero-IF 60 GHz 65 nm CMOS transceiver with direct BPSK modulation demonstrating up to 6 Gb/s data rates over a 2 m wireless link. IEEE J. Solid-State Circuits 44(8), 2085–2099 (2009)CrossRefGoogle Scholar
  26. 26.
    A. Oncu, M. Fujishima, 49 mW 5 Gbit/s CMOS receiver for 60 GHz impulse radio. Electron. Lett. 45(17), 889–890 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hao Gao
    • 1
  • Marion Matters-Kammerer
    • 1
  • Dusan Milosevic
    • 1
  • Peter G. M. Baltus
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations