Skip to main content

Multi-fidelity Surrogate Modeling forĀ Application/Architecture Co-design

  • Conference paper
  • First Online:
High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation (PMBS 2017)

Abstract

The HPC community has been using abstract, representative applications and architecture models to enable faster co-design cycles. While developers often qualitatively verify the correlation of the application abstractions to the parent application, it is equally important to quantify this correlation to understand how the co-design results translate to the parent application. In this paper, we propose a multi-fidelity surrogate (MFS) approach which combines data samples of low-fidelity (LF) models (representative apps and architecture simulation) with a few samples of a high-fidelity (HF) model (parent app). The application of MFS is demonstrated using a multi-physics simulation application and its proxy-app, skeleton-app, and simulation models. Our results show that RMSE between predictions of MFS and the baseline HF models was 4%, which is significantly better than using either LF or HF data alone, demonstrating that MFS is a promising approach for predicting the parent application performance while staying within a computational budget.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Center for Compressible Multiphase Turbulence webpage, 15 February 2015. https://www.eng.ufl.edu/ccmt/

  2. NEK5000 webpage. https://nek5000.mcs.anl.gov/

  3. Vulcan Supercomputer, LLNL webpage. https://computation.llnl.gov/computers/vulcan

  4. Balabanov, V., Grossman, B., Watson, L., Mason, W., Haftka, R.: Multifidelity response surface model for HSCT wing bending material weight. In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, p. 4804 (1998)

    Google ScholarĀ 

  5. Banerjee, T., Hackl, J., Shringarpure, M., Islam, T., Balachandar, S., Jackson, T., Ranka, S.: CMT-bone: a proxy application for compressible multiphase turbulent flows. In: 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), pp. 173ā€“182, December 2016

    Google ScholarĀ 

  6. Barrett, R.F., Borkar, S., Dosanjh, S.S., Hammond, S.D., Heroux, M.A., Hu, X.S., Luitjens, J., Parker, S.G., Shalf, J., Tang, L.: On the role of co-design in high performance computing (2013)

    Google ScholarĀ 

  7. Barrett, R.F., Vaughan, C.T., Heroux, M.A.: Minighost: a miniapp for exploring boundary exchange strategies using stencil computations in scientific parallel computing. Sandia National Laboratories, Technical report SAND 5294832 (2011)

    Google ScholarĀ 

  8. Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design, Innovation, and Discovery, vol. 2. Wiley-Interscience, New York (2005)

    MATHĀ  Google ScholarĀ 

  9. Dosanjh, S.S., Barrett, R.F., Doerfler, D., Hammond, S.D., Hemmert, K.S., Heroux, M.A., Lin, P.T., Pedretti, K.T., Rodrigues, A.F., Trucano, T.: Exascale design space exploration and co-design. Future Gener. Comput. Syst. 30, 46ā€“58 (2014)

    ArticleĀ  Google ScholarĀ 

  10. Dosanjh, S.S., Barrett, R.F., Doerfler, D., Hammond, S.D., Hemmert, K.S., Heroux, M.A., Lin, P.T., Pedretti, K.T., Rodrigues, A.F., Trucano, T., et al.: Assessing the role of mini-applications in predicting key performance characteristics of scientific and engineering applications. J. Parallel Distrib. Comput. 30, 107ā€“122 (2014)

    Google ScholarĀ 

  11. Ellis, M., Mathews, E.: A new simplified thermal design tool for architects. Build. Environ. 36, 1009ā€“1021 (2011)

    ArticleĀ  Google ScholarĀ 

  12. FernƔndez-Godino, M.G., Park, C., Kim, N.H., Haftka, R.T.: Review of multi-fidelity models. arXiv preprint arXiv:1609.07196 (2016)

  13. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C., Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improving performance via mini-applications. Sandia National Laboratories, Technical report SAND2009-5574 3 (2009)

    Google ScholarĀ 

  14. Huang, D., Allen, T., Notz, W., Miller, R.: Sequential kriging optimization using multiple-fidelity evaluations. Struct. Multi. Optim. 32, 369ā€“382 (2006)

    ArticleĀ  Google ScholarĀ 

  15. Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal design of computer experiments. J. Stat. Plan. Infer. 134, 268ā€“287 (2005)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  16. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Technical report LLNL-TR-641973 (2013)

    Google ScholarĀ 

  17. Kennedy, M.C., Oā€™Hagan, A.: Bayesian calibration of computer models. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 63(3), 425ā€“464 (2001)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. Kumar, N., Sringarpure, M., Banerjee, T., Hackl, J., Balachandar, S., Lam, H., George, A., Ranka, S.: CMT-bone: a mini-app for compressible multiphase turbulence simulation software. In: 2015 IEEE International Conference on Cluster Computing, pp. 785ā€“792, September 2015

    Google ScholarĀ 

  19. Kumar, N., Pascoe, C., Hajas, C., Lam, H., Stitt, G., George, A.: Behavioral emulation for scalable design-space exploration of algorithms and architectures. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 5ā€“17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46079-6_1

    ChapterĀ  Google ScholarĀ 

  20. Le Gratiet, L.: Multi-fidelity Gaussian process regression for computer experiments. Universit Paris-Diderot-Paris VII (2013)

    Google ScholarĀ 

  21. Peherstorfer, B., Willcox, K., Gunzburger, M.: Survey of multifidelity methods in uncertainty propagation, inference, and optimization (2016)

    Google ScholarĀ 

  22. Qian, P.Z., Wu, C.J.: Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics 50, 192ā€“204 (2008)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  23. Xiong, Y., Chen, W., Tsui, K.L.: A new variable-fidelity optimization framework based on model fusion and objective-oriented sequential sampling. J. Mech. Des. 130(11), 111401 (2008)

    ArticleĀ  Google ScholarĀ 

  24. Zhang, Y., Kim, N.H., Park, C., Haftka, R.T.: Multi-fidelity surrogate based on single linear regression. ArXiv e-prints arXiv:1705.02956 (2017)

  25. Zhang, Y., Meeker, J., Schutte, J., Kim, N., Haftka, R.: On approaches to combine experimental strength and simulation with application to open-hole-tension configuration. In: Proceedings of the American Society for Composites: Thirty-First Technical Conference (2016)

    Google ScholarĀ 

  26. Zheng, L., Hendrick, T.L., Mittal, R.: A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight. J. Fluid Mech. 721, 118ā€“154 (2013)

    ArticleĀ  MATHĀ  Google ScholarĀ 

Download references

Acknowledgment

This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravind Neelakantan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y. et al. (2018). Multi-fidelity Surrogate Modeling forĀ Application/Architecture Co-design. In: Jarvis, S., Wright, S., Hammond, S. (eds) High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation. PMBS 2017. Lecture Notes in Computer Science(), vol 10724. Springer, Cham. https://doi.org/10.1007/978-3-319-72971-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72971-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72970-1

  • Online ISBN: 978-3-319-72971-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics