Skip to main content

Evaluating On-Node GPU Interconnects for Deep Learning Workloads

  • Conference paper
  • First Online:
High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation (PMBS 2017)

Abstract

Scaling deep learning workloads across multiple GPUs on a single node has become increasingly important in data analytics. A key question is how well a PCIe-based GPU interconnect can perform relative to a custom high-performance interconnect such as NVIDIA’s NVLink. This paper evaluates two such on-node interconnects for eight NVIDIA Pascal P100 GPUs: (a) the NVIDIA DGX-1’s NVLink 1.0 ‘hybrid cube mesh’; and (b) the Cirrascale GX8’s two-level PCIe tree using dual SR3615 switch risers. To show the effects of a range of neural network workloads, we define a parameterized version of the popular ResNet architecture. We define a workload intensity metric that characterizes the expected computation/communication ratio; we also locate AlexNet and GoogLeNet within that space. As expected, the DGX-1 typically has superior performance. However, the GX8 is very competitive on all ResNet workloads. With 8 GPUs, the GX8 can outperform the DGX-1 on all-to-all reductions by 10% for medium-sized payloads; and in rare cases, the GX8 slightly outperforms on ResNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gawande, N.A., Landwehr, J.B., Daily, J.A., Tallent, N.R., Vishnu, A., Kerbyson, D.J.: Scaling deep learning workloads: NVIDIA DGX-1/Pascal and Intel Knights Landing. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 399–408, May 2017

    Google Scholar 

  2. Foley, D., Danskin, J.: Ultra-performance Pascal GPU and NVLink interconnect. IEEE Micro 37(2), 7–17 (2017)

    Article  Google Scholar 

  3. Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S., Hutsell, S., Agarwal, R., Liu, Y.C.: Knights landing: second-generation Intel Xeon Phi product. IEEE Micro 36(2), 34–46 (2016)

    Article  Google Scholar 

  4. Cirrascale: The GX8 series multi-device peering platform, June 2016. http://www.cirrascale.com/documents/datasheets/Cirrascale_GX8Series_Datasheet_CM080C.pdf

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc., Red Hook (2012)

    Google Scholar 

  6. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  8. Cirrascale: Cirrascale SR3615 PCIe switch riser, July 2015

    Google Scholar 

  9. Cirrascale: Scaling GPU compute performance (2015). http://www.cirrascale.com/documents/whitepapers/Cirrascale_ScalingGPUCompute_WP_M987_REVA.pdf

  10. Luehr, N.: Fast multi-GPU collectives with NCCL, April 2016. https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/

  11. NVIDIA: NCCL: NVIDIA collective communications library, August 2017. https://developer.nvidia.com/nccl

  12. Awan, A.A., Hamidouche, K., Venkatesh, A., Panda, D.K.: Efficient large message broadcast using NCCL and CUDA-aware MPI for deep learning. In: Proceedings of the 23rd European MPI Users’ Group Meeting, EuroMPI 2016, New York, NY, USA, pp. 15–22. ACM (2016)

    Google Scholar 

  13. Jeaugey, S.: Optimized inter-GPU collective operations with NCCL, May 2017. http://on-demand-gtc.gputechconf.com/gtc-quicklink/8Bdyh

  14. Patarasuk, P., Yuan, X.: Bandwidth optimal all-reduce algorithms for clusters of workstations. J. Parallel Distrib. Comput. 69(2), 117–124 (2009)

    Article  Google Scholar 

  15. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  16. Berkeley Vision and Learning Center. Berkeley vision and learning center: Caffe (2016). http://caffe.berkeleyvision.org

  17. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  18. Berkeley Vision and Learning Center: Convolutional architecture for fast feature embedding (Caffe) (2016). https://github.com/BVLC/caffe/

  19. NVIDIA: Convolutional architecture for fast feature embedding (Caffe) (2017). https://github.com/NVIDIA/caffe

  20. Ben-Nun, T.: MGBench: multi-GPU computing benchmark suite, February 2016. https://github.com/tbennun/mgbench

  21. Cirrascale: Cirrascale SR3514: Unexpected performance inequality. Technical Brief M901A–092014

    Google Scholar 

  22. Adolf, R., Rama, S., Reagen, B., Wei, G.Y., Brooks, D.: Fathom: reference workloads for modern deep learning methods. In: 2016 IEEE International Symposium on Workload Characterization (IISWC), pp. 1–10, September 2016

    Google Scholar 

  23. Christensen, C., Fogal, T., Luehr, N., Woolley, C.: Topology-aware image compositing using NVLink. In: 2016 IEEE 6th Symposium on Large Data Analysis and Visualization (LDAV), pp. 93–94, October 2016

    Google Scholar 

  24. Shams, S., Platania, R., Lee, K., Park, S.J.: Evaluation of deep learning frameworks over different HPC architectures. In: Proceedings of the IEEE 37th International Conference on Distributed Computing Systems, pp. 1389–1396, June 2017

    Google Scholar 

  25. Nomura, S., Mitsuishi, T., Suzuki, J., Hayashi, Y., Kan, M., Amano, H.: Performance analysis of the multi-GPU system with expether. SIGARCH Comput. Archit. News 42(4), 9–14 (2014)

    Article  Google Scholar 

  26. Ben-Nun, T., Sutton, M., Pai, S., Pingali, K.: Groute: an asynchronous multi-GPU programming model for irregular computations. In: Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, New York, NY, USA, pp. 235–248. ACM (2017)

    Google Scholar 

  27. Awan, A.A., Chu, C.H., Subramoni, H., Panda, D.K.: Optimized broadcast for deep learning workloads on dense-GPU infiniband clusters: MPI or NCCL? arXiv preprint arXiv:1707.09414 (2017)

Download references

Acknowledgments

The authors thank Matthew Macduff (PNNL) for evaluation assistance. We are grateful for funding support from the U.S. Department of Energy’s (DOE) Office of Advanced Scientific Computing Research as part of the “Center for Advanced Technology Evaluation” (CENATE) and “Convergence of Deep Learning and Machine Learning for HPC Simulation and Modeling.” Pacific Northwest National Laboratory is operated by Battelle for the DOE under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan R. Tallent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tallent, N.R., Gawande, N.A., Siegel, C., Vishnu, A., Hoisie, A. (2018). Evaluating On-Node GPU Interconnects for Deep Learning Workloads. In: Jarvis, S., Wright, S., Hammond, S. (eds) High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation. PMBS 2017. Lecture Notes in Computer Science(), vol 10724. Springer, Cham. https://doi.org/10.1007/978-3-319-72971-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72971-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72970-1

  • Online ISBN: 978-3-319-72971-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics