Advertisement

Classification Model of Spikes Morphology Using Principal Components Analysis in Drug-Resistant Epilepsy

  • Ousmane KhoumaEmail author
  • Mamadou Lamine Ndiaye
  • Idy Diop
  • Samba Diaw
  • Abdou K. Diop
  • Sidi Mohamed Farsi
  • Birahime Diouf
  • Khaly Tall
  • Jean J. Montois
Conference paper
  • 329 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 204)

Abstract

Epilepsy is one of the diseases that are more subject to consultation in neurological clinics. To help neurologists to accurately diagnose this disease, several technological tools have been developed. Electroencephalography (EEG) of scalp or deep is a signal acquisition tool from electrical discharges of the brain areas. These signals are often accompanied by transient events commonly called interictal paroxystic events (IPE) or spikes of short durations. Analysis of these IPE could help with the diagnosis of drug-resistant epilepsy. With this intention, we will first of all seek to detect IPE, by separating them from the basic activity of signal EEG. In this paper, we propose spike detection method based on Smoothed Nonlinear Energy Operator (SNEO) using adaptive threshold. Then we will implement a new approach using principal components analysis (PCA) before classification to separate the events detected according to their morphologies. The objective in the long term is to characterize their space-time distribution over all the duration of the EEG signal.

Keywords

Epilepsy Spike detection SNEO PCA  Unsupervised classification 

References

  1. 1.
    Löscher, W., Schmidt, D.: Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 52(4), 657–678 (2011)CrossRefGoogle Scholar
  2. 2.
    Sagher, O.: Editorial: epilepsy surgery. J. Neurosurg. 118, 167–168 (2012)CrossRefGoogle Scholar
  3. 3.
    Bourien, J., Bartolomei, F., Bellanger, J.J.: A method to identify reproducible subsets of co-activated structures during interictal spikes. Application to intra-cerebral EEG in temporal lobe epilepsy. Clin. Neurophysiol. 116, 443–455 (2005)CrossRefGoogle Scholar
  4. 4.
    Tzallas, A.T., Tsipouras, M.G., Tsalikakis, D.G., Karvounis, E.C., Astrakas, L., Konitsiotis, S., Tzaphlidou, M.: Automated epileptic seizure detection methods: a review study. Department of Medical Physics, Medical School, University of Ioannina, Ioannina, Greece (2012)Google Scholar
  5. 5.
    Khouma, O., Ndiaye, M.L., Farsi, S.M., Montois, J.-J., Diop, I., Diouf, B.: Comparative methods of spike detection in epilepsy. In: Science and Information Conference (SAI), pp. 749–745. IEEE, London (2015)Google Scholar
  6. 6.
    Kaiser, J.F.: Some useful properties of teager’s energy operators. In: Proceedings of IEEE ICASSP 1993, Minneapolis, NN, April 1993, vol. 3, pp. 149–152 (1993)Google Scholar
  7. 7.
    Hassanpour, H., Boashash, B.: A time-frequency approach for EEG spike detection. Iran J. Energy Environ. 2(4), 390–395 (2011)Google Scholar
  8. 8.
    Mukhopadhyay, S., Ray, G.C.: A new interpretation of nonlinear energy operator and its efficiency in spike detection. IEEE Trans. Biomed. Eng. 49(12), 1526–1533 (2002)CrossRefGoogle Scholar
  9. 9.
    Pages, J., Escofier, B.: Introduction à l’analyse en composantes principales à partir de l’étude d’un tableau de notes. Méthode d’analyses statistiques multidimensionnelles en didactiques des mathématiques, IRMAR et IRESTE NANTES, pp. 27–29 (1995)Google Scholar
  10. 10.
    Voisine, N.: Approche adaptative de coopération hiérarchique de méthodes de segmentation, application aux images multi composantes. Ph.D. thesis, Université de Rennes 1, France (2002)Google Scholar
  11. 11.
    McCune, B., Grace, J.B.: Analysis of Ecological Communities. MjM Software Design, Gleneden Beach (2002)Google Scholar
  12. 12.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, Cambridge (1998)zbMATHGoogle Scholar
  13. 13.
  14. 14.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006). Science DirectCrossRefGoogle Scholar
  15. 15.
    Candillier, L., Tellier, I., Torre, F., Bousquet, O.: Évaluation en cascade d’algorithmes de clustering. CAP Lille (2006)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Ousmane Khouma
    • 1
    Email author
  • Mamadou Lamine Ndiaye
    • 1
  • Idy Diop
    • 1
  • Samba Diaw
    • 1
  • Abdou K. Diop
    • 1
  • Sidi Mohamed Farsi
    • 1
  • Birahime Diouf
    • 1
  • Khaly Tall
    • 1
  • Jean J. Montois
    • 2
  1. 1.Medical Imagery and Bioinformatics Laboratory (LIMBI), Ecole Supérieure Polytechnique (ESP)Cheikh Anta Diop UniversityDakarSenegal
  2. 2.Signal and Image Processing Laboratory (LTSI INSERM RENNES 1)RennesFrance

Personalised recommendations