Megamodel Consistency Management at Runtime

  • El Hadji Bassirou ToureEmail author
  • Ibrahima Fall
  • Alassane Bah
  • Mamadou Samba Camara
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 204)


This paper addresses the problem of ensuring consistency, correctness and other properties in dynamically changing software systems. The approach uses a Megamodel that represents the current state of the system at runtime including some rules. These rules are formulated as Hoare-Triples and allow to check whether modifications to the software system result in a consistent state, otherwise to fix changes that are likely to violate the megamodel integrity.


Runtime software evolution Runtime verification Megamodeling Correctness Axiomatic semantics 


  1. 1.
    Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.: Abstractions for software architecture and tools to support them. IEEE Trans. Softw. Eng. 21(4), 314–335 (1995)CrossRefGoogle Scholar
  2. 2.
    Bislimovska, B.: Textual and content based search in software model repositories (Doctoral dissertation, Italy) (2014)Google Scholar
  3. 3.
    Bezivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: Proceedings of the 19th Annual ACM Conference on Object Oriented Programming, Systems, Languages, and Applications, October 2004Google Scholar
  4. 4.
    Vogel, T., Giese, H.: A language for feedback loops in self-adaptive systems: executable runtime megamodels. In: The 7th International Symposium on Software Engineering for Adaptive and Self-managing Systems, pp. 129–138, June 2012Google Scholar
  5. 5.
    Toure, E.B., Fall, I., Bah, A., Camara, M.B. Megamodel-based Management of Dynamic Tool Integration in Complex Software Systems. In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS) (2016)Google Scholar
  6. 6.
    Song, H., Huang, G., Chauvel, F., Sun, Y.: Applying MDE tools at runtime: experiments upon runtime models. In: Models@run.time 10, vol. 641, pp. 25–36 (2010).
  7. 7.
    Seidewitz, E.: What models mean. IEEE Software, September/October 2003Google Scholar
  8. 8.
    Bousso, M., Sall, O., Thiam, M., Lo, M., Toure, E.H.B.: Ontology change estimation based on axiomatic semantic and entropy measure. In: Signal Image Technology and Internet Based Systems (SITIS), pp. 458–465, November 2012Google Scholar
  9. 9.
    Vignaga, A., Jouault, F., Bastarrica, M.C., Brunelière, H.: Typing in model management. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 197–212. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  10. 10.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–583 (1969)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change management. IEEE Trans. Softw. Eng. 16(11), 1293–1306 (1990)CrossRefGoogle Scholar
  12. 12.
    Aßmann, U., Bencomo, N., Cheng, B.H., France, R.B.: Models@runtime (Dagstuhl seminar 11481). Dagstuhl Rep. 1(11), 91–123 (2012)Google Scholar
  13. 13.
    Malakuti, S., Bockisch, C., Aksit, M.: Applying the composition filter model for runtime verification of multiple-language software. In: 20th International Symposium on Software Reliability Engineering, pp. 31–40. IEEE, November 2009Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • El Hadji Bassirou Toure
    • 1
    Email author
  • Ibrahima Fall
    • 1
  • Alassane Bah
    • 1
  • Mamadou Samba Camara
    • 1
  1. 1.Institut de Recherche pour le Développement (IRD)École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop de Dakar (UCAD)DakarSenegal

Personalised recommendations