Advertisement

Towards a Conceptual Framework to Scaffold Self-regulation in a MOOC

  • Gorgoumack SambeEmail author
  • François Bouchet
  • Jean-Marc Labat
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 204)

Abstract

MOOCs are part of the ecosystem of self-learning for which self-regulation is one of the pillars. Weakness of self-regulation skills is one of the key factors that contribute to dropout in a MOOC. We present a conceptual framework to promote self-regulated learning in a MOOC. This framework relies on the use of a virtual companion to provide metacognitive prompts and a visualization of indicators. The aim of this system will not only be to improve the quality of learning on the MOOC but also to help reducing attrition.

Keywords

MOOCs Dropout Self-learning Meta-cognition Self-regulation Virtual companion 

Notes

Acknowledgments

This research is partially supported by University Assane Seck of Ziguinchor (UASZ), Sénégal.

References

  1. 1.
    Azevedo, R., Aleven, V.: International Handbook of Metacognition and Learning Technologies. Springer, New York (2013).  https://doi.org/10.1007/978-1-4419-5546-3 CrossRefGoogle Scholar
  2. 2.
    Azevedo, R., Martin, S.A., Taub, M., Mudrick, N.V., Millar, G.C., Grafsgaard, J.F.: Are pedagogical agents’ external regulation effective in fostering learning with intelligent tutoring systems? In: Micarelli, A., Stamper, J., Panourgia, K. (eds.) Intelligent Tutoring Systems. volume 9684, pp. 197–207. Springer International Publishing, Cham (2016)Google Scholar
  3. 3.
    Bannert, M., Mengelkamp, C.: Scaffolding hypermedia learning through metacognitive prompts. In: Azevedo, R., Aleven, V. (eds.) International Handbook of Metacognition and Learning Technologies, pp. 171–186. Springer, New York (2013).  https://doi.org/10.1007/978-1-4419-5546-3_12 CrossRefGoogle Scholar
  4. 4.
    Bouchet, F., Harley, J.M., Azevedo, R.: Can adaptive pedagogical agents’ prompting strategies improve students’ learning and self-regulation? In: Micarelli, A., Stamper, J., Panourgia, K. (eds.) Intelligent Tutoring Systems. volume 9684, pp. 368–374. Springer International Publishing, Cham (2016)Google Scholar
  5. 5.
    Bull, S., Kay, J.: Open learner models as drivers for metacognitive processes. In: Azevedo, R., Aleven, V. (eds.) International Handbook of Metacognition and Learning Technologies, pp. 349–365. Springer, New York (2013).  https://doi.org/10.1007/978-1-4419-5546-3_23 CrossRefGoogle Scholar
  6. 6.
    Cisel, M.: Analyzing completion rates of first French xMOOC. In: Proceedings of the European MOOC Stakeholder Summit 2014, p. 26 (2014)Google Scholar
  7. 7.
    Feyzi-Behnagh, R., Azevedo, R., Bouchet, F., Tian, Y.: The role of an open learner model and immediate feedback on metacognitive calibration in MetaTutor. In: The 2016 Annual Meeting of the American Educational Research Association (2016)Google Scholar
  8. 8.
    Ge, X.: Designing learning technologies to support self-regulation during ill-structured problem-solving processes. In: Azevedo, R., Aleven, V. (eds.) International Handbook of Metacognition and Learning Technologies, pp. 213–228. Springer, New York (2013).  https://doi.org/10.1007/978-1-4419-5546-3_15 CrossRefGoogle Scholar
  9. 9.
    Gütl, C., Rizzardini, R.H., Chang, V., Morales, M.: Attrition in MOOC: lessons learned from drop-out students. In: Uden, L., Sinclair, J., Tao, Y.-H., Liberona, D. (eds.) LTEC 2014. CCIS, vol. 446, pp. 37–48. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10671-7_4 Google Scholar
  10. 10.
    Khalil, H., Ebner, M.: MOOCs completion rates and possible methods to improve retention-a literature review. Inb: World Conference on Educational Multimedia, Hypermedia and Telecommunications 2014, pp. 1305–1313 (2014)Google Scholar
  11. 11.
    Kizilcec, R.F., Piech, C., Schneider, E.: Deconstructing disengagement: analyzing learner subpopulations in massive open online courses. In: Proceedings of the Third International Conference on Learning Analytics and Knowledge, pp. 170–179. ACM (2013)Google Scholar
  12. 12.
    Kizilcec, R.F., Pérez-Sanagustín, M., Maldonado, J.J.: Recommending self-regulated learning strategies does not improve performance in a MOOC. In: Proceedings of the Third ACM Conference on Learning at Scale, Edinburgh, UK (2016)Google Scholar
  13. 13.
    Meyer, R.: What it’s like to teach a MOOC (and what the heck’s a MOOC?). The Atlantic (2012)Google Scholar
  14. 14.
    Nawrot I., Doucet, A.: Building engagement for MOOC students: introducing support for time management on online learning platforms. In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014 Companion, Republic and Canton of Geneva, Switzerland, pp. 1077–1082. International World Wide Web Conferences Steering Committee (2014)Google Scholar
  15. 15.
    Ramesh, A., Goldwasser, D., Huang, B., Daume III, H., Getoor, L.: Modeling learner engagement in MOOCs using probabilistic soft logic. In: NIPS Workshop on Data Driven Education (2013)Google Scholar
  16. 16.
    Reich, J.: MOOC completion and retention in the context of student intent. EDUCAUSE Review Online (2014)Google Scholar
  17. 17.
    Rosé, C.P., Carlson, R., Yang, D., Wen, M., Resnick, L., Goldman, P., Sherer, J.: Social factors that contribute to attrition in MOOCs. In: Proceedings of the First ACM Conference on Learning @ Scale Conference, pp. 197–198. ACM (2014)Google Scholar
  18. 18.
    Sambe, G.: Vers un apprentissage autorégulé dans les MOOC. In: Rencontres Jeunes Chercheurs Environnements Informatiques pour l’Apprentissage Humain, pp. 101–106 (2016)Google Scholar
  19. 19.
    Schunk, D.H., Zimmerman, B.J.: Motivation and Self-regulated Learning: Theory, Research, and Applications. Routledge, Upper Saddle River (2012). Google-Books-ID: MDQLfOg0jX0CGoogle Scholar
  20. 20.
    Terry, K.P.S.: The effects of online time management practices on self-regulated learning and academic self-efficacy. Ph.D. thesis, Virginia Polytechnic Institute and State University (2002)Google Scholar
  21. 21.
    Yang, D., Wen, M., Rose, C.: Peer influence on attrition in massive open online courses. In: Proceedings of Educational Data Mining (2014)Google Scholar
  22. 22.
    Zimmerman, B.J., Bonner, S., Pagnoulle, C., Kovach, R., Smets, G.: Des apprenants autonomes: Autorégulation des apprentissages. De Boeck Supérieur, April 2000Google Scholar
  23. 23.
    Zimmerman, B.J., Campillo, M.: Motivating self-regulated problem solvers. In: Davidson, J.E., Sternberg, R.E. (eds.) The Psychology of Problem Solving, pp. 233–262. Cambridge University Press, New York (2003)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Gorgoumack Sambe
    • 1
    Email author
  • François Bouchet
    • 1
  • Jean-Marc Labat
    • 1
  1. 1.Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606ParisFrance

Personalised recommendations