Advertisement

Geometric Approach of Blind Channel Estimation

  • Agbeti Bricos Ahossi
  • Ahmed Dooguy KoraEmail author
  • Roger Marcelin Faye
Conference paper
  • 324 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 204)

Abstract

This paper introduces a geometric approach of channel estimation (GACE). It is a blind channel estimation method for multiple input multiple output systems. GACE is based on a two-step geometric approach of source separation (GASS) that outperforms the existing ones. It is an approximated maximum likelihood estimation method which proceeds by the determination of the polyhedral edges tilts representing the matrix parameters. It operates by identifying matrix parameters using a geometric consideration depending on the probabilistic hypothesis of the sources. The simplicity of this method is based on a cloud observation, which is used to determine the edge of parallelogram describing the matrix channel parameters. In this paper, the case of real channel parameters and complex data sources for higher modulation order are performed. The simulation results show the efficiency of the proposed approach.

Keywords

Channel estimation Blind Geometric approach  Sources separation MIMO 

References

  1. 1.
    Zhu, H., Zhang, S., Zhao, H.: Single channel source separation and parameter estimation of multi-component PRBCPM-SFM signal based on generalized period. Digit. Sig. Process. 40, 224–237 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Acar, Y., Doğan, H., Panayırcı, E.: On channel estimation for spatial modulated systems over time-varying channels. Digit. Sig. Process. 37, 43–52 (2015)CrossRefGoogle Scholar
  3. 3.
    Besseghier, M., Djebbar, A.B.: New design of pilot patterns for joint semi-blind estimation of CFO and channel for OFDM systems. AEU Int. J. Electron. Commun. 69(4), 759–764 (2015)CrossRefGoogle Scholar
  4. 4.
    Michelusi, N., Mitra, U.: Cross-layer design of distributed sensing-estimation with quality feedback—part II: myopic schemes. IEEE Trans. Sig. Process. 63(5), 1243–1258 (2015).  https://doi.org/10.1109/TSP.2014.2388440 MathSciNetGoogle Scholar
  5. 5.
    Wenbo, D., Fang, Y., Wei, D., Jian, S.: Time–frequency joint sparse channel estimation for MIMO-OFDM systems. IEEE Commun. Lett. 19(1), 58–61 (2015).  https://doi.org/10.1109/LCOMM.2014.2372006 CrossRefGoogle Scholar
  6. 6.
    Du, J., Yuan, C., Zhang, J.: Semi-blind parallel factor based receiver for joint symbol and channel estimation in amplify-and-forward multiple-input multiple-output relay systems. IET Commun. 9(6), 735–744 (2014).  https://doi.org/10.1049/iet-com.2014.0553 Google Scholar
  7. 7.
    Frederico, B., et al.: Multiple-antenna techniques in LTE-advanced. IEEE Commun. Mag. 50(3), 114 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, Cambridge (2010)Google Scholar
  9. 9.
    Gao, F., Zeng, Y., Nallanathan, A., Ng, T.-S.: Robust subspace blind channel estimation for cyclic prefixed MIMO ODFM systems: algorithm, identifiability and performance analysis. IEEE J. Sel. Areas Commun. 26(2), 378–388 (2008)CrossRefGoogle Scholar
  10. 10.
    Shin, C., Heath, R.W., Powers, E.J.: Blind channel estimation for MIMO-OFDM systems. IEEE TVT 56(2), 670–685 (2007)Google Scholar
  11. 11.
    Abed-meraim, K., Cardoso, J., Gorokhov, A., Loubaton, P., Mouliness, E.: On subspace methods for blind identification of single input multiple output FIR systems. IEEE Trans. Signal Process. 45(1), 42–55 (1997)CrossRefGoogle Scholar
  12. 12.
    Wang, H., Lin, Y., Chen, B.: Data – efficient blind OFDM channel identification using receiver diversity. IEEE Trans. Signal Process. 51(10), 2613–2622 (2003)CrossRefGoogle Scholar
  13. 13.
    Kora, A.D., Cances, J.P., Meghdadi, V., Vianou, A.: Blind MIMO OFDM channel estimation based on receiver diversity. Mediterr. J. Electron. Commun. 3(1), 31–39 (2007)Google Scholar
  14. 14.
    Mansour, A.: Contribution à la séparation aveugle de sources: Ph.D. Dissertation. At Institut National Polytechnique de Grenoble, pp. 41–46 (1992)Google Scholar
  15. 15.
    Puntonet, C.G., Prieto, A., Jutten, C., Rodriguez-Alvarez, M., Ortega, J.: Separation of sources: a geometry based procedure for reconstruction of n-valued signal. Sig. Process. 46(3), 267–284 (1995)CrossRefzbMATHGoogle Scholar
  16. 16.
    Puntonet, C.G., Mansour, A., Jutten, C.: Geometrical algorithm for blind separation of sources. In: Actes du XVeme colloque GRETSI, Juan-Les-Pins, France, pp. 273–276 (1995)Google Scholar
  17. 17.
    Ahossi, A.B., Kora, A.D., Faye, R.M.: MIMO blind channel estimation based on geometric approach of source separation. In: ICEER 2013, pp. 63–68 (2013)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Agbeti Bricos Ahossi
    • 1
  • Ahmed Dooguy Kora
    • 2
    Email author
  • Roger Marcelin Faye
    • 1
  1. 1.Ecole Supérieure Polytechnique, Université Cheikh Anta DiopDakarSenegal
  2. 2.Ecole Supérieure Multinationale des TélécommunicationsDakarSenegal

Personalised recommendations