Advertisement

A Decision Support System for Pediatric Diagnosis

  • Precious Iheme
  • Nicholas Omoregbe
  • Sanjay MisraEmail author
  • Foluso Ayeni
  • Davies Adeloye
Conference paper
  • 328 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 204)

Abstract

Newborns are fragile and have a high risk of dying within the first 28 days of their life, therefore they require quality care from conception. This research aims at implementing a mobile pediatric diagnostic system for the rural settlers in Nigeria, reducing childhood mortality and providing an alternative pediatric professional. 581 records classified with naïve Bayes and decision-stump-tree classifier gave a higher accuracy level for naïve Bayes. A decision-support system is developed to aid health workers in rural areas in providing quality health service for children below six, which will provide low-cost medical service and contribute to reducing childhood mortality.

Keywords

Child healthcare Mobile technology Naïve bayes Pediatric disease 

Notes

Acknowledgement

We acknowledge the support and sponsorship provided by Covenant University through the Centre for Research, Innovation and Discovery (CUCRID).

References

  1. 1.
    UN-DESA.: Transforming our world: the 2030 Agenda for Sustainable Development (2015). https://sustainabledevelopment.un.org/post2015/transformingourworld
  2. 2.
    Chan, M., Lake, A.: Towards ending preventable child deaths. Lancet 379 (2012)Google Scholar
  3. 3.
    Wardlaw, T., You, D., Newby, H., Anthony, D., Chopra, M.: Child survival: a message of hope but a call for renewed commitment in UNICEF report. Reprod. Health 10, 1–4 (2013)CrossRefGoogle Scholar
  4. 4.
    George, C.M., Vignola, E., Ricca, J., Davis, T., Perin, J., Tam, Y., Perry, H.: Evaluation of the effectiveness of care groups in expanding population coverage of Key child survival interventions and reducing under-5 mortality: a comparative analysis using the lives saved tool (LiST). BMC Publ. Health 1–9 (2015)Google Scholar
  5. 5.
    Shifa, G.T., Ahmed, A.A., Yalew, A.W.: Early days of life are crucial for child survival in gamo gofa zone, Southern Ethiopia: A community based study. BMC Pediatr. 16, 1–10 (2016)CrossRefGoogle Scholar
  6. 6.
    Hershey, C.L., Doocy, S., Anderson, J., Haskew, C., Spiegel, P., Moss, W.J.: Incidence and risk factors for malaria, pneumonia and diarrhea in children under 5 in UNHCR refugee camps: A retrospective study. Confl. Health 5, 1–11 (2011)CrossRefGoogle Scholar
  7. 7.
    Kahabuka, C., Kvåle, G., Hinderaker, S.G.: Factors associated with severe disease from malaria, pneumonia and diarrhea among children in rural Tanzania – A hospital-based cross-sectional study. BMC Infect. Dis. 12, 1–9 (2012)CrossRefGoogle Scholar
  8. 8.
    Yakoob, M.Y., Theodoratou, E., Jabeen, A., Imdad, A., Eisele, T.P., Ferguson, J., Jhass, A., Rudan, I., Campbell, H., Black, R.E., Bhutta, Z.A.: Preventive zinc supplementation in developing countries: impact on mortality and morbidity due to diarrhea, pneumonia and malaria. BMC Publ. Health 11, 1–10 (2011)CrossRefGoogle Scholar
  9. 9.
    WHO: Health in 2015: from MDGs to SDGs (2016). http://www.who.int/gho/publications/mdgs-sdgs/en/
  10. 10.
    Sachs, J.D.: Happiness and Sustainable Development: Concepts and Evidence. World HappinessGoogle Scholar
  11. 11.
    Ahmed, M.: The challenges ahead. Education (2015)Google Scholar
  12. 12.
    UNICEF: Accelerating Child Survival and development. The Nigerian Child: United Nations Children’s Fund Nigeria Newsletter, pp. 1–12 (2008)Google Scholar
  13. 13.
    Sa, J.H.G., Rebelo, M.S., Brentani, A., Grisi, S.J., Iwaya, L.H., Simplicio Jr., M.A., Carvalho, T.C.M.B., Gutierrez, M.A.: Georeferenced and secure mobile health system for large scale data collection in primary care. Int. J. Med. Inform. 94, 91–99 (2016)CrossRefGoogle Scholar
  14. 14.
    Sun, N., Rau, P.L.P., Li, Y., Owen, T., Thimbleby, H.: Design and evaluation of a mobile phone-based health intervention for patients with hypertensive condition. Comput. Hum. Behav. 63, 98–105 (2016)CrossRefGoogle Scholar
  15. 15.
    West, D.M.: Using mobile technology to improve maternal health and fight Ebola: A case study of mobile innovation in Nigeria. Center for Technological Innovation at Brookings (2015)Google Scholar
  16. 16.
    Hampshire, K., Porter, G., Owusu, S.A., Mariwah, S., Abane, A., Robson, E., Munthalie, A., DeLannoy, A., Bangog, A., Gunguluzaf, N., Milnere, J.: Informal m-health: How are young people using mobile phones to bridge healthcare gaps in Sub-Saharan Africa? Soc. Sci. Med. 142, 90–99 (2015)CrossRefGoogle Scholar
  17. 17.
    Uddin, M.J., Shamsuzzaman, M., Horng, L., Labrique, A., Vasudevan, L., Zeller, K., Chowdhury, M., Larson, C.P., Bishai, D., Alamj, N.: Use of mobile phones for improving vaccination coverage among children living in rural hard-to-reach areas and urban streets of Bangladesh. Vaccine 34(2), 276–283 (2016)CrossRefGoogle Scholar
  18. 18.
    Domek, G.J., Contreras-Roldan, I.L., O’Leary, S.T., Bull, S., Furniss, A., Kempe, A., Asturias, E.J.: SMS text message reminders to improve infant vaccination coverage in Guatemala: A pilot randomized controlled trial. Vaccine 34(21), 2437–2443 (2016)CrossRefGoogle Scholar
  19. 19.
    Nada, N., Adepa, I., Fatin, G.: Design a fuzzy expert system for pediatrics diseases diagnosis. Raf. J. Comp. Maths 5(2), 155–173 (2008)Google Scholar
  20. 20.
    Corani, G., Zaffalon, M.: JNCC2: An extension of naive Bayes classifier suited for small and incomplete data sets. Environ. Model. Softw. 23(7), 960–961 (2008)CrossRefGoogle Scholar
  21. 21.
    Soria, D., Garibaldi, J.M., Ambrogi, F., Biganzoli, E.M., Ellis, I.O.: A ‘non-parametric’ version of the naive bayes classifier. Knowl. Based Syst. 24(6), 775–784 (2011)CrossRefGoogle Scholar
  22. 22.
    Chen, J., Huang, H., Tian, F., Tian, S.: A selective bayes classifier for classifying incomplete data based on gain ratio. Knowl. Based Syst. 21(7), 530–534 (2008)CrossRefGoogle Scholar
  23. 23.
    Bounhas, M., Hamed, M.G., Prade, H., Serrurier, M., Mellouli, K.: Naive possibilistic classifiers for imprecise or uncertain numerical data. Fuzzy Sets Syst. 239, 137–156 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Iheme, P., Omoregbe, N., Misra, S., Adeoye, D., Adewole, A.: Mobile-Bayesian diagnostic system for childhood infectious diseases. In: Proceedings of ICADIWT 2017, Maxico (2017)Google Scholar
  25. 25.
    Maglogiannis, I., Loukis, E., Zafiropoulos, E., Stasis, A.: Support vectors machine-based identification of heart valve diseases using heart sounds. Comput. Methods Programs Biomed. 95(1), 47–61 (2009)CrossRefGoogle Scholar
  26. 26.
    Kampouraki, A., Vassis, D., Belsis, P., Skourlas, C.: e-Doctor: A web based support vector machine for automatic medical diagnosis. Procedia Soc. Behav. Sci. 73, 467–474 (2013)CrossRefGoogle Scholar
  27. 27.
    Son, C.S., Kim, Y.N., Kim, H.S., Park, H.S., Kim, M.S.: Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. J. Biomed. Inform. 45(5), 999–1008 (2012)CrossRefGoogle Scholar
  28. 28.
    Sumbaly, R., Vishnusri, N., Jeyalatha, S.: Diagnosis of breast cancer using decision tree data mining technique. Int. J. Comput. Appl. 98, 1–9 (2014)Google Scholar
  29. 29.
    Tu, M.C., Shin, D., Shin, D. (eds.): A comparative study of medical data classification methods based on decision tree and bagging algorithms. In: Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing (2009)Google Scholar
  30. 30.
    Hassan, S., Rafi, M., Shaikh, M.S.: Comparing SVM and naive bayes classifiers for text categorization with Wikitology as knowledge enrichment. In: IEEE 14th International Multitopic Conference (INMIC) (2011)Google Scholar
  31. 31.
    Nematzadeh, B. Z.: Comparison of Decision Tree and Naive Bayes Methods in Classification of Researcher’s Cognitive Styles in Academic Environment (2012)Google Scholar
  32. 32.
    Tung, W.L., Quek, C.: GenSo-FDSS: a neural-fuzzy decision support system for pediatric ALL cancer subtype identification using gene expression data. Artif. Intell. Med. 33(1), 61–88 (2005)CrossRefGoogle Scholar
  33. 33.
    Winsemann, T., Köppen, V.: Persistence in enterprise data warehouses. Otto-von-Guericke University Magdeburg, Technical Reports (2012)Google Scholar
  34. 34.
    Murphy, K.P.: Naive bayes classifiers. University of British Columbia (2006)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Precious Iheme
    • 1
  • Nicholas Omoregbe
    • 1
  • Sanjay Misra
    • 1
    Email author
  • Foluso Ayeni
    • 1
  • Davies Adeloye
    • 1
  1. 1.Covenant UniversityOtaNigeria

Personalised recommendations