Skip to main content

Role of Cerebrovascular Disease in Cognition

  • Chapter
  • First Online:
Neurodegenerative Diseases
  • 1367 Accesses

Abstract

Vascular risk factors and cerebrovascular disease are recognized factors implicated in the evolution towards dementia, not only of vascular origin, but also of degenerative dementia as Alzheimer’s disease. Even among nondemented subjects, hypertension, diabetes, and stroke are associated with worse performance in attention, speed and motor control, and executive functions. Influence of vascular risk factors in cognition starts early in life. Recently, several publications expressed that intervention in potential modifiable risk factors should receive special attention in order to delay or prevent dementia. Current scientific evidence sustains that policy actions should be conducted in order to reduce vascular risk factors in middle life, with population and community-level measures. Cerebral small vessel disease, which can be expressed by white matter changes, lacunes, and microbleeds, has gained clinical relevance in the last decades. Intervention in prevention of this previously overlooked disease can represent a potential outcome in experimental studies aiming to reduce cerebrovascular burden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lincoln P, Fenton K, Alessi C, Prince M, Brayne C, Wortmann M, Patel K, Deanfield J, Mwatsama M. The Blackfriars Consensus on brain health and dementia. Lancet. 2014;383:1805–6.

    Article  PubMed  Google Scholar 

  2. Smith D, Yaffe K. Dementia (including Alzheimer’s disease) can be prevented: statement supported by international experts. J Alzheimers Dis. 2014;38:699–703.

    PubMed  Google Scholar 

  3. Orrell M, Brayne C, INTERDEM (early detection and timely INTERvention in DEMentia); Alzheimer Europe; Alzheimer’s Disease International; European Association of Geriatric Psychiatry. Dementia prevention: call to action. Lancet. 2015;386(10004):1625.

    Article  PubMed  Google Scholar 

  4. METACOHORTS Consortium. Electronic address: joanna.wardlaw@ed.ac.uk; METACOHORTS Consortium. METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration: an initiative of the Joint Programme for Neurodegenerative Disease Research. Alzheimers Dement. 2016;12:1235–49.

    Article  Google Scholar 

  5. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13:788–94.

    Article  PubMed  Google Scholar 

  6. Gottesman RF, Schneider AL, Zhou Y, Coresh J, Green E, Gupta N, Knopman DS, Mintz A, Rahmim A, Sharrett AR, Wagenknecht LE, Wong DF, Mosley TH. Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA. 2017;317:1443–50.

    Article  CAS  PubMed  Google Scholar 

  7. Hénon H, Pasquier F, Leys D. Poststroke dementia. Cerebrovasc Dis. 2006;22:61–70.

    Article  PubMed  Google Scholar 

  8. Troncoso JC, Zonderman AB, Resnick SM, Crain B, Pletnikova O, O’Brien RJ. Effect of infarcts on dementia in the Baltimore longitudinal study of aging. Ann Neurol. 2008;64:168–76.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L. Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology. 2004;63:1181–6.

    Article  CAS  PubMed  Google Scholar 

  10. Kivipelto M, Helkala EL, Laakso MP, Hänninen T, Hallikainen M, Alhainen K, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ. 2001;322:1447–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hebert LE, Scherr PA, Bennett DA, Bienias JL, Wilson RS, Morris MC, Evans DA. Blood pressure and late-life cognitive function change. A biracial longitudinal population study. Neurology. 2004;62:2021–4.

    Article  CAS  PubMed  Google Scholar 

  12. Shah RC, Wilson RS, Bienias JL, Arvanitakis Z, Evans DA, Bennett DA. Relation of blood pressure to risk of incident Alzheimer’s disease and change in global cognitive function in older persons. Neuroepidemiology. 2006;26:30–6.

    Article  PubMed  Google Scholar 

  13. Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes Mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61:661–6.

    Article  PubMed  Google Scholar 

  14. Rastas S, Pirttilä T, Mattila K, Verkkoniemi A, Juva K, Niinistö L, et al. Vascular risk factors and dementia in the general population aged >85 years. Prospective population-based study. Neurobiol Aging. 2010;31:1–7.

    Article  PubMed  Google Scholar 

  15. Ruitenberg A, Skoog I, Ott A, Aevarsson O, Witteman JC, Lernfelt B, et al. Blood pressure and risk of dementia: results from the Rotterdam study and the Gothenburg H-70 Study. Dement Geriatr Cogn Disord. 2001;12:33–9.

    Article  CAS  PubMed  Google Scholar 

  16. Harrington F, Saxby BK, McKeith IG, Wesnes K, Ford GA. Cognitive performance in hypertensive and normotensive older subjects. Hypertension. 2000;36:1079–82.

    Article  CAS  PubMed  Google Scholar 

  17. Launer LJ, Ross GW, Petrovitch H, Masaki K, Foley D, White LR, Havlik RJ. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging. 2000;21:49–55.

    Article  CAS  PubMed  Google Scholar 

  18. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5:64–74.

    Article  PubMed  Google Scholar 

  19. Singh-Manoux A, Kivimaki M, Glymour MM, Elbaz A, Berr C, Ebmeier KP, et al. Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ. 2011;344:d7622.

    Article  Google Scholar 

  20. Strand BH, Langballe EM, Hjellvik V, Handal M, Næss O, Knudsen GP, et al. Midlife vascular risk factors and their association with dementia deaths: results from a Norwegian prospective study followed up for 35 years. J Neurol Sci. 2013;324(1–2):124–30.

    Article  PubMed  Google Scholar 

  21. Alonso A, Jacobs DR Jr, Menotti A, Nissinen A, Dontas A, Kafatos A, Kromhout D. Cardiovascular risk factors and dementia mortality: 40 years of follow-up in the Seven Countries Study. J Neurol Sci. 2009;280(1–2):79–83.

    Article  PubMed  Google Scholar 

  22. Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology. 2005;64(2):277–81.

    Article  CAS  PubMed  Google Scholar 

  23. Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71:1057–64.

    Article  CAS  PubMed  Google Scholar 

  24. Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2011;12(5):e426–37.

    Article  CAS  PubMed  Google Scholar 

  25. Purnell C, Gao S, Callahan CM, Hendrie HC. Cardiovascular risk factors and incident Alzheimer disease: a systematic review of the literature. Alzheimer Dis Assoc Disord. 2009;23:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Virta JJ, Heikkilä K, Perola M, Koskenvuo M, Räihä I, Rinne JO, Kaprio J. Midlife cardiovascular risk factors and late cognitive impairment. Eur J Epidemiol. 2013;28:405–16.

    Article  PubMed  Google Scholar 

  27. Luchsinger JA. Adiposity, hyperinsulinemia, diabetes and Alzheimer’s disease: an epidemiological perspective. Eur J Pharmacol. 2008;585:119–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Euser SM, Sattar N, Witteman JC, Bollen EL, Sijbrands EJ, Hofman A, Perry IJ, Breteler MM, Westendorp RG, PROSPER and Rotterdam Study. A prospective analysis of elevated fasting glucose levels and cognitive function in older people: results from PROSPER and the Rotterdam Study. Diabetes. 2010;59:1601–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rawlings AM, Sharrett AR, Mosley TH, Ballew SH, Deal JA, Selvin E. Glucose peaks and the risk of dementia and 20-year cognitive decline. Diabetes Care. 2017;40:879–86.

    Article  PubMed  Google Scholar 

  30. Rawlings AM, Sharrett AR, Schneider AL, Coresh J, Albert M, Couper D, Griswold M, Gottesman RF, Wagenknecht LE, Windham BG, Selvin E. Diabetes in midlife and cognitive change over 20 years: a cohort study. Ann Intern Med. 2014;161:785–93.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vagelatos NT, Eslick GD. Type 2 diabetes as a risk factor for Alzheimer’s disease: the confounders, interactions, and neuropathology associated with this relationship. Epidemiol Rev. 2013;2013(35):152–60.

    Article  Google Scholar 

  32. Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes-systematic overview of prospective observational studies. Diabetologia. 2005;48:2460–9.

    Article  CAS  PubMed  Google Scholar 

  33. Verdelho A, Madureira S, Ferro JM, Basile AM, Chabriat H, Erkinjuntti T, et al. Differential impact of cerebral white matter changes, diabetes, hypertension and stroke on cognitive performance among non-disabled elderly. The LADIS study. J Neurol Neurosurg Psychiatry. 2007;78:1325–30.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Manschot SM, Brands AM, van der Grond J, Kessels RP, Algra A, Kappelle LJ, et al. Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes. 2006;55:1106–13.

    Article  CAS  PubMed  Google Scholar 

  35. Yip AG, Brayne C, Matthews FE, MRC Cognitive Function and Ageing Study. Risk factors for incident dementia in England and Wales: the Medical Research Council Cognitive Function and Ageing Study. A population-based nested case–control study. Age Ageing. 2006;35:154–60.

    Article  PubMed  Google Scholar 

  36. Morsi M, Maher A, Metwally A, Abo-Elmagd O, Johar D, Bernstein L. A shared comparison of diabetes mellitus and neurodegenerative disorders. J Cell Biochem. 2017. https://doi.org/10.1002/jcb.26261. [Epub ahead of print].

  37. Folch J, Pedrós I, Patraca I, Martínez N, Sureda F, Camins A. Metabolic basis of sporadic Alzheimer’s disease. Role of hormones related to energy metabolism. Curr Pharm Des. 2013;19(38):6739–48.

    Article  CAS  PubMed  Google Scholar 

  38. Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain. 2009;132:1820–32.

    Article  PubMed  PubMed Central  Google Scholar 

  39. de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol. 2008;2:1101–13.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mirza Z, Kamal MA, Abuzenadah AM, Al-Qahtani MH, Karim S. Establishing genomic/transcriptomic links between Alzheimer’s disease and type II diabetes mellitus by meta-analysis approach. CNS Neurol Disord Drug Targets. 2014;13:501–16.

    Article  CAS  PubMed  Google Scholar 

  41. Abdul-Rahman O, Sasvari-Szekely M, Ver A, Rosta K, Szasz BK, Kereszturi E, Keszler G. Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats. BMC Genomics. 2012;13:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Swaminathan SK, Ahlschwede KM, Sarma V, Curran GL, Omtri RS, Decklever T, Lowe VJ, Poduslo JF, Kandimalla KK. Insulin differentially affects the distribution kinetics of amyloid beta 40 and 42 in plasma and brain. J Cereb Blood Flow Metab. 2017:271678X17709709. https://doi.org/10.1177/0271678X17709709. [Epub ahead of print].

  43. Reitz C, Bos MJ, Hofman A, Koudstaal PJ, Breteler MM. Prestroke cognitive performance, incident stroke, and risk of dementia: the Rotterdam Study. Stroke. 2008;39:36–41.

    Article  PubMed  Google Scholar 

  44. Savva GM, Stephan BC, Alzheimer’s Society Vascular Dementia Systematic Review Group. Epidemiological studies of the effect of stroke on incident dementia: a systematic review. Stroke. 2010;41:e41–6.

    Article  PubMed  Google Scholar 

  45. Allan LM, Rowan EN, Firbank MJ, Thomas AJ, Parry SW, Polvikoski TM, et al. Long term incidence of dementia, predictors of mortality and pathological diagnosis in older stroke survivors. Brain. 2011;134(Pt 12):3716–27.

    Article  PubMed  Google Scholar 

  46. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009;8(11):1006–18.

    Article  PubMed  Google Scholar 

  47. Verdelho A, Madureira S, Moleiro C, Ferro JM, Santos CO, Erkinjuntti T, et al. White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study. Neurology. 2010;75:160–7.

    Article  CAS  PubMed  Google Scholar 

  48. Jagust WJ, Zheng L, Harvey DJ, Mack WJ, Vinters HV, Weiner MW, et al. Neuropathological basis of magnetic resonance images in aging and dementia. Ann Neurol. 2008;63:72–80.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Capizzano AA, Ación L, Bekinschtein T, Furman M, Gomila H, Martínez A, et al. White matter hyperintensities are significantly associated with cortical atrophy in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2004;75:822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Duering M, Righart R, Wollenweber FA, Zietemann V, Gesierich B, Dichgans M. Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology. 2015;84:1685–92.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu W, Wong A, Au L, Yang J, Wang Z, Leung EY, Chen S, Ho CL, Mok VC. Influence of amyloid-β on cognitive decline after stroke/transient ischemic attack: three-year longitudinal study. Stroke. 2015;46:3074–80.

    Article  CAS  PubMed  Google Scholar 

  52. Sahathevan R, Linden T, Villemagne VL, Churilov L, Ly JV, Rowe C, Donnan G, Brodtmann A. Positron emission tomographic imaging in stroke: cross-sectional and follow-up assessment of amyloid in ischemic stroke. Stroke. 2016;47:113–9.

    Article  CAS  PubMed  Google Scholar 

  53. Wollenweber FA, Därr S, Müller C, Duering M, Buerger K, Zietemann V, Malik R, Brendel M, Ertl-Wagner B, Bartenstein P, Rominger A, Dichgans M. Prevalence of amyloid positron emission tomographic positivity in poststroke mild cognitive impairment. Stroke. 2016;47:2645–8.

    Article  PubMed  Google Scholar 

  54. Schmidt A, Diederich K, Strecker JK, Geng B, Hoppen M, Duning T, Schäbitz WR, Minnerup J. Progressive cognitive deficits in a mouse model of recurrent photothrombotic stroke. Stroke. 2015;46:1127–31.

    Article  PubMed  Google Scholar 

  55. Muller M, Sigurdsson S, Kjartansson O, Aspelund T, Lopez OL, Jonnson PV, et al. Joint effect of mid- and late-life blood pressure on the brain: the AGES-Reykjavik Study. Neurology. 2014;82:2187–95.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gottesman RF, Schneider AL, Albert M, Alonso A, Bandeen-Roche K, Coker L, Coresh J, Knopman D, Power MC, Rawlings A, Sharrett AR, Wruck LM, Mosley TH. Midlife hypertension and 20-year cognitive change: the atherosclerosis risk in communities neurocognitive study. JAMA Neurol. 2014;71:1218–27.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Power MC, Schneider ALC, Wruck L, Griswold M, Coker LH, Alonso A, Jack CR Jr, Knopman D, Mosley TH, Gottesman RF. Life-course blood pressure in relation to brain volumes. Alzheimers Dement. 2016;12:890–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Qiu C, Winblad B, Fratiglioni L. Low diastolic pressure and risk of dementia in very old people: a longitudinal study. Dement Geriatr Cogn Disord. 2009;28:213–9.

    Article  PubMed  Google Scholar 

  59. Razay G, Williams J, King E, Smith AD, Wilcock G. Blood pressure, dementia and Alzheimer’s disease: the OPTIMA longitudinal study. Dement Geriatr Cogn Disord. 2009;28:70–4.

    Article  CAS  PubMed  Google Scholar 

  60. Stewart R, Xue QL, Masaki K, Petrovitch H, Ross GW, White LR, Launer LJ. Change in blood pressure and incident dementia: a 32-year prospective study. Hypertension. 2009;54:233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rodrigue KM, Rieck JR, Kennedy KM, Devous MD Sr, Diaz-Arrastia R, Park DC. Risk factors for β-amyloid deposition in healthy aging: vascular and genetic effects. JAMA Neurol. 2013;70:600–6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Korf ES, White LR, Scheltens P, Launer LJ. Midlife blood pressure and the risk of hippocampal atrophy: the Honolulu Asia Aging Study. Hypertension. 2004;44:29–34.

    Article  CAS  PubMed  Google Scholar 

  63. Hoffman LB, Schmeidler J, Lesser GT, Beeri MS, Purohit DP, Grossman HT, Haroutunian V. Less Alzheimer disease neuropathology in medicated hypertensive than nonhypertensive persons. Neurology. 2009;72:1720–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Di Carlo A, Baldereschi M, Amaducci L, Maggi S, Grigoletto F, Scarlato G, Inzitari D. Cognitive impairment without dementia in older people: prevalence, vascular risk factors, impact on disability. The Italian Longitudinal Study on Aging. J Am Geriatr Soc. 2000;48:775–82.

    Article  PubMed  Google Scholar 

  65. Cacciatore F, Abete P, Ferrara N, Paolisso G, Amato L, Canonico S, et al. The role of blood pressure in cognitive impairment in an elderly population. Osservatorio Geriatrico Campano Group. J Hypertens. 1997;15:135–42.

    Article  CAS  PubMed  Google Scholar 

  66. Budge MM, de Jager C, Hogervorst E, Smith AD. Total plasma homocysteine, age, systolic blood pressure, and cognitive performance in older people. J Am Geriatr Soc. 2002;50:2014–8.

    Article  PubMed  Google Scholar 

  67. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–713.

    Article  PubMed  PubMed Central  Google Scholar 

  68. McGuinness B, Todd S, Passmore P, Bullock R. Blood pressure lowering in patients without prior cerebrovascular disease for prevention of cognitive impairment and dementia. Cochrane Database Syst Rev. 2009;(4):CD004034.

    Google Scholar 

  69. Iadecola C, Yaffe K, Biller J, Bratzke LC, Faraci FM, Gorelick PB, Gulati M, Kamel H, Knopman DS, Launer LJ, Saczynski JS, Seshadri S, Zeki Al Hazzouri A, American Heart Association Council on Hypertension; Council on Clinical Cardiology; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Quality of Care and Outcomes Research; and Stroke Council. Impact of hypertension on cognitive function: a scientific statement from the American Heart Association. Hypertension. 2016;68:e67–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA. 1991;265:3255–64.

    Article  Google Scholar 

  71. Lithell H, Hansson L, Skoog I, Elmfeldt D, Hofman A, Olofsson B, et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens. 2003;21:875–86.

    Article  CAS  PubMed  Google Scholar 

  72. Peters R, Beckett N, Forette F, Tuomilehto J, Clarke R, Ritchie C, et al. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol. 2008;7:683–9.

    Article  CAS  PubMed  Google Scholar 

  73. Yusuf S, Diener HC, Sacco RL, Cotton D, Ounpuu S, Lawton WA, et al. Telmisartan to prevent recurrent stroke and cardiovascular events. N Engl J Med. 2008;359:1225–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Forette F, Seux ML, Staessen JA, Thijs L, Birkenhager WH, Babarskiene MR, et al. Prevention of dementia in randomised double-blind placebocontrolled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet. 1998;352:1347–51.

    Article  CAS  PubMed  Google Scholar 

  75. Tzourio C, Anderson C, Chapman N, Woodward M, Neal B, MacMahon S, et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med. 2003;163:1069–75.

    Article  CAS  PubMed  Google Scholar 

  76. Williamson JD, Launer LJ, Bryan RN, Coker LH, Lazar RM, Gerstein HC, Murray AM, Sullivan MD, Horowitz KR, Ding J, Marcovina S, Lovato L, Lovato J, Margolis KL, Davatzikos C, Barzilay J, Ginsberg HN, Linz PE, Miller ME, Action to Control Cardiovascular Risk in Diabetes Memory in Diabetes Investigators. Cognitive function and brain structure in persons with type 2 diabetes mellitus after intensive lowering of blood pressure and lipid levels: a randomized clinical trial. JAMA Intern Med. 2014;174:324–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ihle-Hansen H, Thommessen B, Fagerland MW, Øksengård AR, Wyller TB, Engedal K, Fure B. Multifactorial vascular risk factor intervention to prevent cognitive impairment after stroke and TIA: a 12-month randomized controlled trial. Int J Stroke. 2014;9:932–8.

    Article  PubMed  Google Scholar 

  78. Matz K, Teuschl Y, Firlinger B, Dachenhausen A, Keindl M, Seyfang L, Tuomilehto J, Brainin M, ASPIS Study Group. Multidomain lifestyle interventions for the prevention of cognitive decline after ischemic stroke: randomized trial. Stroke. 2015;46(10):2874–80.

    Article  PubMed  Google Scholar 

  79. Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, Antikainen R, Bäckman L, Hänninen T, Jula A, Laatikainen T, Lindström J, Mangialasche F, Paajanen T, Pajala S, Peltonen M, Rauramaa R, Stigsdotter-Neely A, Strandberg T, Tuomilehto J, Soininen H, Kivipelto M. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385:2255–63.

    Article  PubMed  Google Scholar 

  80. Anstey KJ, Mack HA, Cherbuin N. Alcohol consumption as a risk factor for dementia and cognitive decline: meta-analysis of prospective studies. Am J Geriatr Psychiatry. 2009;17:542–55.

    Article  PubMed  Google Scholar 

  81. Ilomaki J, Jokanovic N, Tan EC, Lonnroos E. Alcohol consumption, dementia and cognitive decline: an overview of systematic reviews. Curr Clin Pharmacol. 2015;10:204–12.

    Article  CAS  PubMed  Google Scholar 

  82. Hogenkamp PS, Benedict C, Sjögren P, Kilander L, Lind L, Schiöth HB. Late-life alcohol consumption and cognitive function in elderly men. Age (Dordr). 2014;36:243–9.

    Article  CAS  Google Scholar 

  83. Langballe EM, Ask H, Holmen J, Stordal E, Saltvedt I, Selbæk G, Fikseaunet A, Bergh S, Nafstad P, Tambs K. Alcohol consumption and risk of dementia up to 27 years later in a large, population-based sample: the HUNT study, Norway. Eur J Epidemiol. 2015;30:1049–56.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xu W, Wang H, Wan Y, Tan C, Li J, Tan L, Yu JT. Alcohol consumption and dementia risk: a dose-response meta-analysis of prospective studies. Eur J Epidemiol. 2017;32:31–42.

    Article  PubMed  Google Scholar 

  85. Ding J, Eigenbrodt ML, Mosley TH Jr, Hutchinson RG, Folsom AR, Harris TB, Nieto FJ. Alcohol intake and cerebral abnormalities on magnetic resonance imaging in a community-based population of middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) study. Stroke. 2004;35:16–21.

    Article  PubMed  Google Scholar 

  86. Gu Y, Scarmeas N, Short EE, Luchsinger JA, DeCarli C, Stern Y, Manly JJ, Schupf N, Mayeux R, Brickman AM. Alcohol intake and brain structure in a multiethnic elderly cohort. Clin Nutr. 2014;33:662–7.

    Article  CAS  PubMed  Google Scholar 

  87. Potter AS, Newhouse PA. Acute nicotine improves cognitive deficits in young adults with attention-deficit/hyperactivity disorder. Pharmacol Biochem Behav. 2008;88:407–17.

    Article  CAS  PubMed  Google Scholar 

  88. Newhouse P, Kellar K, Aisen P, White H, Wesnes K, Coderre E, et al. Nicotine treatment of mild cognitive impairment: a 6-month double-blind pilot clinical trial. Neurology. 2012;78:91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Anstey KJ, von Sanden C, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166:367–78.

    Article  PubMed  Google Scholar 

  90. Reitz C, den Heijer T, van Duijn C, Hofman A, Breteler MM. Relation between smoking and risk of dementia and Alzheimer disease: the Rotterdam Study. Neurology. 2007;69:998–1005.

    Article  CAS  PubMed  Google Scholar 

  91. Saito EK, Diaz N, Chung J, McMurtray A. Smoking history and Alzheimer’s disease risk in a community-based clinic population. J Educ Health Promot. 2017;6:24.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9:689–701.

    Article  PubMed  Google Scholar 

  93. Traylor M, Adib-Samii P, Harold D, Alzheimer’s Disease Neuroimaging Initiative, International Stroke Genetics Consortium (ISGC), UK Young Lacunar Stroke DNA Resource, Dichgans M, Williams J, Lewis CM, Markus HS, METASTROKE, International Genomics of Alzheimer’s Project (IGAP), Investigators. Shared genetic contribution to ischaemic stroke and Alzheimer’s disease. Ann Neurol. 2016;79(5):739–47. https://doi.org/10.1002/ana.24621.

    Article  CAS  PubMed Central  Google Scholar 

  94. Banerjee G, Kim HJ, Fox Z, Jäger HR, Wilson D, Charidimou A, Na HK, Na DL, Seo SW, Werring DJ. MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden. Brain. 2017;140:1107–16.

    Article  PubMed  Google Scholar 

  95. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam scan study. J Neurol Neurosurg Psychiatry. 2001;70:9–14.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Longstreth WT, Manolio TA, Arnold A. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people: the cardiovascular health study. Stroke. 1996;27:1274–82.

    Article  PubMed  Google Scholar 

  97. Ylikoski A, Erkinjuntti T, Raininko R, Sarna S, Sulkava R, Tilvis R. White matter hyperintensities on mri in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke. 1995;26:1171–7.

    Article  CAS  PubMed  Google Scholar 

  98. Schmidt R, Schmidt H, Haybaeck J, Loitfelder M, Weis S, Cavalieri M, Seiler S, Enzinger C, Ropele S, Erkinjuntti T, Pantoni L, Scheltens P, Fazekas F, Jellinger K. Heterogeneity in age-related white matter changes. Acta Neuropathol. 2011;122:171–85.

    Article  PubMed  Google Scholar 

  99. Skoog I, Berg S, Johansson B, Palmertz B, Andreasson LA. The influence of white matter lesions on neuropsychological functioning in demented and non-demented 85-yeras-olds. Acta Neurol Scand. 1996;93:142–8.

    Article  CAS  PubMed  Google Scholar 

  100. de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, Breteler MM. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain. 2002;125:765–72.

    Article  PubMed  Google Scholar 

  101. Ylikoski R, Ylikoski A, Raininko R, Keskivaara P, Sulkava R, Tilvis R, Erkinjuntti T. Cardiovascular diseases, health status, brain imaging findings and neuropsychological functioning in neurologically healthy elderly individuals. Arch Gerontol Geriatr. 2000;30:115–30.

    Article  CAS  PubMed  Google Scholar 

  102. Inaba M, White L, Bell C, Chen R, Petrovitch H, Launer L, Abbott RD, Ross GW, Masaki K. White matter lesions on brain magnetic resonance imaging scan and 5-year cognitive decline: the Honolulu-Asia aging study. J Am Geriatr Soc. 2011;59:1484–9.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Silbert LC, Howieson DB, Dodge H, Kaye JA. Cognitive impairment risk: white matter hyperintensity progression matters. Neurology. 2009;73:120–5.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jokinen H, Kalska H, Ylikoski R, Madureira S, Verdelho A, van der Flier WM, Scheltens P, Barkhof F, Visser MC, Fazekas F, Schmidt R, O’Brien J, Waldemar G, Wallin A, Chabriat H, Pantoni L, Inzitari D, Erkinjuntti T, LADIS Group. Longitudinal cognitive decline in subcortical ischemic vascular disease—the LADIS study. Cerebrovasc Dis. 2009;27:384–91.

    Article  PubMed  Google Scholar 

  105. Steffens DC, Potter GG, McQuoid DR, MacFall JR, Payne ME, Burke JR, Plassman BL, Welsh-Bohmer KA. Longitudinal magnetic resonance imaging vascular changes, apolipoprotein e genotype, and development of dementia in the neurocognitive outcomes of depression in the elderly study. Am J Geriatr Psychiatry. 2007;15:839–49.

    Article  PubMed  Google Scholar 

  106. Kuller LH, Lopez OL, Newman A, Beauchamp NJ, Burke G, Dulberg C, Fitzpatrick A, Fried L, Haan MN. Risk factors for dementia in the cardiovascular health cognition study. Neuroepidemiology. 2003;22:13–22.

    Article  PubMed  Google Scholar 

  107. The LADIS Study Group. 2001–2011: a decade of the LADIS (Leukoaraiosis and DISability) study: what have we learned about white matter changes and small-vessel disease? Cerebrovasc Dis. 2011;32:577–88.

    Article  Google Scholar 

  108. Hachinski VC, Potter P, Merskey H. Leuko-araiosis: an ancient term for a new problem. Can J Neurol Sci. 1986;13:533–4.

    Article  CAS  PubMed  Google Scholar 

  109. Madureira S, Verdelho A, Ferro J, Basile AM, Chabriat H, Erkinjuntti T, Fazekas F, Hennerici M, O’brien J, Pantoni L, Salvadori E, Scheltens P, Visser MC, Wahlund LO, Waldemar G, Wallin A, Inzitari D, LADIS Study Group. Development of a neuropsychological battery for a multinational study: the LADIS. Neuroepidemiology. 2006;27:101–16.

    Article  PubMed  Google Scholar 

  110. Bombois S, Debette S, Bruandet A, Delbeuck X, Delmaire C, Leys D, Pasquier F. Vascular subcortical hyperintensities predict conversion to vascular and mixed dementia in mci patients. Stroke. 2008;39:2046–51.

    Article  PubMed  Google Scholar 

  111. Meguro K, Ishii H, Kasuya M, Akanuma K, Meguro M, Kasai M, Lee E, Hashimoto R, Yamaguchi S, Asada T. Incidence of dementia and associated risk factors in japan: the osaki-tajiri project. J Neurol Sci. 2007;260:175–82.

    Article  PubMed  Google Scholar 

  112. Kandiah N, Chander RJ, Ng A, Wen MC, Cenina AR, Assam PN. Association between white matter hyperintensity and medial temporal atrophy at various stages of Alzheimer’s disease. Eur J Neurol. 2015;22:150–5.

    Article  CAS  PubMed  Google Scholar 

  113. Tuladhar AM, Reid AT, Shumskaya E, de Laat KF, van Norden AG, van Dijk EJ, van Norden AG, van Dijk EJ, Norris DG, de Leeuw FE. Relationship between white matter hyperintensities, cortical thickness, and cognition. Stroke. 2015;46:425–32.

    Article  PubMed  Google Scholar 

  114. Duering M, Righart R, Csanadi E, Jouvent E, Herve D, Chabriat H, Dichgans M. Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology. 2012;79:2025–8.

    Article  PubMed  Google Scholar 

  115. Loeb C, Gandolfo C, Crose R, Conti M. Dementia associated with lacunar infarction. Stroke. 1992;23:1225–9.

    Article  CAS  PubMed  Google Scholar 

  116. Makin S, Turpin S, Dennis M, Wardlaw J. Cognitive impairment after lacunar stroke: systematic review and meta-analysis of incidence, prevalence and comparison with other stroke sub-types. J Neurol Neurosurg Psychiatry. 2013;84:893–900.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Carey CL, Kramer JH, Josephson SA, Mungas D, Reed BR, Schuff N, Weiner MW, Chui HC. Subcortical lacunes are associated with executive dysfunction in cognitively normal elderly. Stroke. 2008;39:397–402.

    Article  PubMed  Google Scholar 

  118. Benisty S, Gouw AA, Porcher R, Madureira S, Hernandez K, Poggesi A, van der Flier WM, Van Straaten EC, Verdelho A, Ferro J, Pantoni L, Inzitari D, Barkhof F, Fazekas F, Chabriat H, LADIS Study Group. Location of lacunar infarcts correlates with cognition in a sample of non-disabled subjects with age-related white-matter changes: the LADIS study. J Neurol Neurosurg Psychiatry. 2009;80:478–83.

    Article  CAS  PubMed  Google Scholar 

  119. Jellinger KA, Attems J. Incidence of cerebrovascular lesions in Alzheimer’s disease: a postmortem study. Acta Neuropathol. 2003;105:14–7.

    PubMed  Google Scholar 

  120. Miyao S, Takano A, Teramoto J, Takahashi A. Leukoaraiosis in relation to prognosis for patients with lacunar infarction. Stroke. 1992;23:1434–8.

    Article  CAS  PubMed  Google Scholar 

  121. Hanyu H, Tanaka Y, Shimizu S, Takasaki M, Fujita H, Kaneko N, Yamamoto Y, Harada M. Cerebral microbleeds in Binswanger’s disease: a gradient-echo t2*-weighted magnetic resonance imaging study. Neurosci Lett. 2003;340:213–6.

    Article  CAS  PubMed  Google Scholar 

  122. Poels MM, Vernooij MW, Ikram MA, Hofman A, Krestin GP, van der Lugt A, Breteler MM. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke. 2010;41:S103–6.

    Article  PubMed  Google Scholar 

  123. Seo SW, Hwa Lee B, Kim EJ, Chin J, Sun Cho Y, Yoon U, Na DL. Clinical significance of microbleeds in subcortical vascular dementia. Stroke. 2007;38:1949–51.

    Article  PubMed  Google Scholar 

  124. Ayaz M, Boikov AS, Haacke EM, Kido DK, Kirsch WM. Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia. J Magn Reson Imaging. 2010;31:142–8.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Shams S, Martola J, Granberg T, Li X, Shams M, Fereshtehnejad SM, Cavallin L, Aspelin P, Kristoffersen-Wiberg M, Wahlund LO. Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis—the Karolinska Imaging Dementia Study. Am J Neuroradiol. 2015;36:661–6.

    Article  CAS  PubMed  Google Scholar 

  126. Gregoire SM, Smith K, Jager HR, Benjamin M, Kallis C, Brown MM, Cipolotti L, Werring DJ. Cerebral microbleeds and long-term cognitive outcome: longitudinal cohort study of stroke clinic patients. Cerebrovasc Dis. 2012;33:430–5.

    Article  CAS  PubMed  Google Scholar 

  127. Werring DJ, Frazer DW, Coward LJ, Losseff NA, Watt H, Cipolotti L, et al. Cognitive dysfunction in patients with cerebral microbleeds on t2*-weighted gradient-echo MRI. Brain. 2004;127:2265–75.

    Article  PubMed  Google Scholar 

  128. Qiu C, Cotch MF, Sigurdsson S, Jonsson PV, Jonsdottir MK, Sveinbjrnsdottir S, et al. Cerebral microbleeds, retinopathy, and dementia: the ages-Reykjavik study. Neurology. 2010;75:2221–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Poels MM, Ikram MA, van der Lugt A, Hofman A, Niessen WJ, Krestin GP, Breteler MM, Vernooij MW. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam scan study. Neurology. 2012;78:326–33.

    Article  CAS  PubMed  Google Scholar 

  130. van Norden AG, van den Berg HA, de Laat KF, Gons RA, van Dijk EJ, de Leeuw FE. Frontal and temporal microbleeds are related to cognitive function: the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC) Study. Stroke. 2011;42:3382–6.

    Article  PubMed  Google Scholar 

  131. Shams S, Granberg T, Martola J, Charidimou A, Li X, Shams M, Fereshtehnejad SM, Cavallin L, Aspelin P, Wiberg-Kristoffersen M, Wahlund LO. Cerebral microbleeds topography and cerebrospinal fluid biomarkers in cognitive impairment. J Cereb Blood Flow Metab. 2017;37:1006–13.

    Article  PubMed  Google Scholar 

  132. Akoudad S, Wolters FJ, Viswanathan A, de Bruijn RF, van der Lugt A, Hofman A, Koudstaal PJ, Ikram MA, Vernooij MW. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol. 2016;73:934–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Verdelho M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verdelho, A. (2018). Role of Cerebrovascular Disease in Cognition. In: Galimberti, D., Scarpini, E. (eds) Neurodegenerative Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-72938-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72938-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72937-4

  • Online ISBN: 978-3-319-72938-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics