Skip to main content

Genetic Risk Factors for Complex Forms of Alzheimer’s Disease

  • Chapter
  • First Online:
  • 1401 Accesses

Abstract

The most frequent forms of Alzheimer’s disease (AD) are complex, and their distribution within families cannot be explained by a Mendelian model of inheritance. In fact, these forms of AD result from a combination of genetic and environmental factors, with the estimated heritability ranging from 58 to 79%. This chapter reviews the large body of research on genetic risk factors in AD. Linkage analyses and candidate gene association studies have notably identified APOE (the major genetic risk factor for AD) and SORL1. Most of the other loci known to be associated with AD have been identified in genome-wide association studies and (more recently) analyses of rare variants. These AD-associated loci and genes have highlighted a number of underlying biological mechanisms, which will be discussed briefly. Although some of these pathways (e.g., amyloid precursor protein (APP) metabolism and tau pathology) fit with the amyloid cascade hypothesis, others point out innate immunity and microglia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, et al. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol. 2016;15(5):455–532.

    Article  PubMed  Google Scholar 

  2. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74.

    Article  PubMed  Google Scholar 

  3. Green RC, Cupples LA, Go R, Benke KS, Edeki T, Griffith PA, et al. Risk of dementia among white and African American relatives of patients with Alzheimer disease. JAMA. 2002;287(3):329.

    Article  PubMed  Google Scholar 

  4. Schellenberg GD, Deeb SS, Boehnke M, Bryant EM, Martin GM, Lampe TH, et al. Association of an apolipoprotein CII allele with familial dementia of the Alzheimer type. J Neurogenet. 1987;4(2–3):97–108.

    Article  CAS  PubMed  Google Scholar 

  5. Pericak-Vance MA, Bebout JL, Gaskell PC, Yamaoka LH, Hung WY, Alberts MJ, et al. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am J Hum Genet. 1991;48(6):1034–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res. 1991;541(1):163–6.

    Article  CAS  PubMed  Google Scholar 

  7. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90(5):1977–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weisgraber KH, Rall SC, Mahley RW. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem. 1981;256(17):9077–83.

    CAS  PubMed  Google Scholar 

  9. Zannis VI, Breslow JL, Utermann G, Mahley RW, Weisgraber KH, Havel RJ, et al. Proposed nomenclature of apoE isoproteins, apoE genotypes, and phenotypes. J Lipid Res. 1982;23(6):911–4.

    CAS  PubMed  Google Scholar 

  10. Fullerton SM, Clark AG, Weiss KM, Nickerson DA, Taylor SL, Stengârd JH, et al. Apolipoprotein E variation at the sequence haplotype level: implications for the origin and maintenance of a major human polymorphism. Am J Hum Genet. 2000;67(4):881–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanlon CS, Rubinsztein DC. Arginine residues at codons 112 and 158 in the apolipoprotein E gene correspond to the ancestral state in humans. Atherosclerosis. 1995;112(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  12. Singh PP, Singh M, Mastana SS. APOE distribution in world populations with new data from India and the UK. Ann Hum Biol. 2006;33(3):279–308. Taylor & Francis.

    Article  CAS  PubMed  Google Scholar 

  13. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43(8):1467–72.

    Article  CAS  PubMed  Google Scholar 

  14. Chartier-Harlin MC, Parfitt M, Legrain S, Pérez-Tur J, Brousseau T, Evans A, et al. Apolipoprotein E, epsilon 4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer’s disease: analysis of the 19q13.2 chromosomal region. Hum Mol Genet. 1994;3(4):569–74.

    Article  CAS  PubMed  Google Scholar 

  15. van Duijn CM, de Knijff P, Cruts M, Wehnert A, Havekes LM, Hofman A, et al. Apolipoprotein E4 allele in a population-based study of early-onset Alzheimer’s disease. Nat Genet. 1994;7(1):74–8.

    Article  PubMed  Google Scholar 

  16. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278(16):1349–56.

    Article  CAS  PubMed  Google Scholar 

  17. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet. 1994;7(2):180–4.

    Article  CAS  PubMed  Google Scholar 

  18. Talbot C, Lendon C, Craddock N, Shears S, Morris JC, Goate A. Protection against Alzheimer’s disease with apoE epsilon 2. Lancet (London, England). 1994;343(8910):1432–3.

    Article  CAS  Google Scholar 

  19. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.

    Article  CAS  PubMed  Google Scholar 

  20. Genin E, Hannequin D, Wallon D, Sleegers K, Hiltunen M, Combarros O, et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry. 2011;16(9):903–7. Nature Publishing Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reitz C, Mayeux R. Genetics of Alzheimer’s disease in Caribbean Hispanic and African American populations. Biol Psychiatry. 2014;75(7):534–41.

    Article  CAS  PubMed  Google Scholar 

  22. Tang MX, Stern Y, Marder K, Bell K, Gurland B, Lantigua R, et al. The APOE-epsilon4 allele and the risk of Alzheimer disease among African Americans, whites, and Hispanics. JAMA. 1998;279(10):751–5.

    Article  CAS  PubMed  Google Scholar 

  23. Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang L-S, et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4, and the risk of late-onset Alzheimer disease in African Americans. JAMA. 2013;309(14):1483–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tosto G, Fu H, Vardarajan BN, Lee JH, Cheng R, Reyes-Dumeyer D, et al. F-box/LRR-repeat protein 7 is genetically associated with Alzheimer’s disease. Ann Clin Transl Neurol. 2015;2(8):810–20. Wiley-Blackwell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirano A, Ohara T, Takahashi A, Aoki M, Fuyuno Y, Ashikawa K, et al. A genome-wide association study of late-onset Alzheimer’s disease in a Japanese population. Psychiatr Genet. 2015;25(4):139–46.

    Article  CAS  PubMed  Google Scholar 

  26. Miyashita A, Koike A, Jun G, Wang L-S, Takahashi S, Matsubara E, et al. SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. Toft M, editor. PLoS One. 2013;8(4):e58618. Public Library of Science.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu P, Li H-L, Liu Z-J, Tao Q-Q, Xu M, Guo Q-H, et al. Associations between apolipoprotein E gene polymorphisms and Alzheimer’s disease risk in a large Chinese Han population. Clin Interv Aging. 2015;10:371–8. Dove Press.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol. 2016;15(8):857–68.

    Article  CAS  PubMed  Google Scholar 

  29. Lee SH, Harold D, Nyholt DR, Goddard ME, Zondervan KT, Williams J, et al. Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer’s disease, multiple sclerosis and endometriosis. Hum Mol Genet. 2013;22(4):832–41.

    Article  CAS  PubMed  Google Scholar 

  30. Ridge PG, Hoyt KB, Boehme K, Mukherjee S, Crane PK, Haines JL, et al. Assessment of the genetic variance of late-onset Alzheimer’s disease. Neurobiol Aging. 2016;41:200.e13–20.

    Article  CAS  Google Scholar 

  31. Ridge PG, Mukherjee S, Crane PK, Kauwe JSK. Alzheimer’s disease: analyzing the missing heritability. PLoS One. 2013;8(11):e79771. Public Library of Science.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guerreiro RJ, Hardy J. TOMM40 association with Alzheimer disease: tales of APOE and linkage disequilibrium. Arch Neurol. 2012;69(10):1243–4.

    Article  PubMed  Google Scholar 

  33. Jun G, Vardarajan BN, Buros J, Yu C-E, Hawk MV, Dombroski BA, et al. Comprehensive search for Alzheimer disease susceptibility loci in the APOE region. Arch Neurol. 2012;69(10):1270. American Medical Association.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ashley-Koch AE, Shao Y, Rimmler JB, Gaskell PC, Welsh-Bohmer KA, Jackson CE, et al. An autosomal genomic screen for dementia in an extended Amish family. Neurosci Lett. 2005;379(3):199–204.

    Article  CAS  PubMed  Google Scholar 

  35. Avramopoulos D, Fallin MD, Bassett SS. Linkage to chromosome 14q in Alzheimer’s disease (AD) patients without psychotic symptoms. Am J Med Genet B Neuropsychiatr Genet. 2005;132B(1):9–13.

    Article  PubMed  Google Scholar 

  36. Blacker D, Bertram L, Saunders AJ, Moscarillo TJ, Albert MS, Wiener H, et al. Results of a high-resolution genome screen of 437 Alzheimer’s disease families. Hum Mol Genet. 2003;12(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  37. Butler AW, Ng MYM, Hamshere ML, Forabosco P, Wroe R, Al-Chalabi A, et al. Meta-analysis of linkage studies for Alzheimer’s disease—a web resource. Neurobiol Aging. 2009;30(7):1037–47.

    Article  PubMed  Google Scholar 

  38. Curtis D, North BV, Sham PC. A novel method of two-locus linkage analysis applied to a genome scan for late onset Alzheimer’s disease. Ann Hum Genet. 2001;65(Pt 5):473–81.

    Article  CAS  PubMed  Google Scholar 

  39. Giedraitis V, Hedlund M, Skoglund L, Blom E, Ingvast S, Brundin R, et al. New Alzheimer’s disease locus on chromosome 8. J Med Genet. 2006;43(12):931–5. BMJ Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hahs DW, McCauley JL, Crunk AE, McFarland LL, Gaskell PC, Jiang L, et al. A genome-wide linkage analysis of dementia in the Amish. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(2):160–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hamshere ML, Holmans PA, Avramopoulos D, Bassett SS, Blacker D, Bertram L, et al. Genome-wide linkage analysis of 723 affected relative pairs with late-onset Alzheimer’s disease. Hum Mol Genet. 2007;16(22):2703–12.

    Article  CAS  PubMed  Google Scholar 

  42. Holmans P, Hamshere M, Hollingworth P, Rice F, Tunstall N, Jones S, et al. Genome screen for loci influencing age at onset and rate of decline in late onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet. 2005;135B(1):24–32.

    Article  PubMed  Google Scholar 

  43. Kehoe P, Wavrant-De Vrieze F, Crook R, Wu WS, Holmans P, Fenton I, et al. A full genome scan for late onset Alzheimer’s disease. Hum Mol Genet. 1999;8(2):237–45.

    Article  CAS  PubMed  Google Scholar 

  44. Lee JH, Cheng R, Graff-Radford N, Foroud T, Mayeux R, National Institute on Aging Late-Onset Alzheimer’s Disease Family Study Group. Analyses of the National Institute on Aging Late-Onset Alzheimer’s Disease Family Study: implication of additional loci. Arch Neurol. 2008;65(11):1518–26.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee JH, Cheng R, Santana V, Williamson J, Lantigua R, Medrano M, et al. Expanded genomewide scan implicates a novel locus at 3q28 among Caribbean Hispanics with familial Alzheimer disease. Arch Neurol. 2006;63(11):1591. American Medical Association.

    Article  PubMed  Google Scholar 

  46. Lee JH, Mayeux R, Mayo D, Mo J, Santana V, Williamson J, et al. Fine mapping of 10q and 18q for familial Alzheimer’s disease in Caribbean Hispanics. Mol Psychiatry. 2004;9(11):1042–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu F, Arias-Vásquez A, Sleegers K, Aulchenko YS, Kayser M, Sanchez-Juan P, et al. A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population. Am J Hum Genet. 2007;81(1):17–31. Elsevier.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Myers A, Wavrant De-Vrieze F, Holmans P, Hamshere M, Crook R, Compton D, et al. Full genome screen for Alzheimer disease: stage II analysis. Am J Med Genet. 2002;114(2):235–44.

    Article  PubMed  Google Scholar 

  49. Olson JM, Goddard KAB, Dudek DM. A second locus for very-late-onset Alzheimer disease: a genome scan reveals linkage to 20p and epistasis between 20p and the amyloid precursor protein region. Am J Hum Genet. 2002;71(1):154–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pericak-Vance MA, Bass MP, Yamaoka LH, Gaskell PC, Scott WK, Terwedow HA, et al. Complete genomic screen in late-onset familial Alzheimer disease. Evidence for a new locus on chromosome 12. JAMA. 1997;278(15):1237–41.

    Article  CAS  PubMed  Google Scholar 

  51. Pericak-Vance MA, Grubber J, Bailey LR, Hedges D, West S, Santoro L, et al. Identification of novel genes in late-onset Alzheimer’s disease. Exp Gerontol. 2000;35(9–10):1343–52.

    Article  CAS  PubMed  Google Scholar 

  52. Rademakers R, Cruts M, Sleegers K, Dermaut B, Theuns J, Aulchenko Y, et al. Linkage and association studies identify a novel locus for Alzheimer disease at 7q36 in a Dutch population-based sample. Am J Hum Genet. 2005;77(4):643–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scott WK, Hauser ER, Schmechel DE, Welsh-Bohmer KA, Small GW, Roses AD, et al. Ordered-subsets linkage analysis detects novel Alzheimer disease loci on chromosomes 2q34 and 15q22. Am J Hum Genet. 2003;73(5):1041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sillén A, Andrade J, Lilius L, Forsell C, Axelman K, Odeberg J, et al. Expanded high-resolution genetic study of 109 Swedish families with Alzheimer’s disease. Eur J Hum Genet. 2008;16(2):202–8. Nature Publishing Group.

    Article  PubMed  CAS  Google Scholar 

  55. Sillén A, Forsell C, Lilius L, Axelman K, Björk BF, Onkamo P, et al. Genome scan on Swedish Alzheimer’s disease families. Mol Psychiatry. 2006;11(2):182–6. Nature Publishing Group.

    Article  PubMed  CAS  Google Scholar 

  56. Ertekin-Taner N. Genetics of Alzheimer’s disease: a centennial review. Neurol Clin. 2007;25(3):611–67.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6(2):95–108. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  58. Risch NJ. Searching for genetic determinants in the new millennium. Nature. 2000;405(6788):847–56. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  59. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  60. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet. Nature Publishing Group. 2007;39(2):168–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reitz C, Cheng R, Rogaeva E, Lee JH, Tokuhiro S, Zou F, et al. Meta-analysis of the association between variants in SORL1 and Alzheimer disease. Arch Neurol. 2011;68(1):99.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet. 2001;2(2):91–9. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  63. Farrer LA, Bowirrat A, Friedland RP, Waraska K, Korczyn AD, Baldwin CT. Identification of multiple loci for Alzheimer disease in a consanguineous Israeli-Arab community. Hum Mol Genet. 2003;12(4):415–22.

    Article  CAS  PubMed  Google Scholar 

  64. Hiltunen M, Mannermaa A, Thompson D, Easton D, Pirskanen M, Helisalmi S, et al. Genome-wide linkage disequilibrium mapping of late-onset Alzheimer’s disease in Finland. Neurology. 2001;57(9):1663–8.

    Article  CAS  PubMed  Google Scholar 

  65. Zubenko GS, Hughes HB, Stiffler JS, Hurtt MR, Kaplan BB. A genome survey for novel Alzheimer disease risk loci: results at 10-cM resolution. Genomics. 1998;50(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  66. Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A, et al. Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet. 2007;16(8):865–73. Oxford University Press.

    Article  CAS  PubMed  Google Scholar 

  67. The International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320.

    Article  PubMed Central  CAS  Google Scholar 

  68. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9(5):356–69. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  69. Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, et al. A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med Genet. 2008;1(1):44.

    Google Scholar 

  70. Beecham GW, Martin ER, Li Y-J, Slifer MA, Gilbert JR, Haines JL, et al. Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am J Hum Genet. 2009;84(1):35–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet. 2008;83(5):623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Carrasquillo MM, Zou F, Pankratz VS, Wilcox SL, Ma L, Walker LP, et al. Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer’s disease. Nat Genet. 2009;41(2):192–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH, et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry. 2007;68(4):613–8.

    Article  CAS  PubMed  Google Scholar 

  74. Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L, et al. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol. 2008;65(1):45–53.

    Article  PubMed  Google Scholar 

  75. Poduslo SE, Huang R, Huang J, Smith S. Genome screen of late-onset Alzheimer’s extended pedigrees identifies TRPC4AP by haplotype analysis. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  76. Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, Fallon JH, et al. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. Domschke K, editor. PLoS One. 2009;4(8):e6501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL, et al. GAB2 alleles modify Alzheimer’s risk in APOE ɛ4 carriers. Neuron. 2007;54(5):713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hollingworth P, Harold D, Sims R, Gerrish A. Common variants at ABCA7, MS4A6A, MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43(5):429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43(5):436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.

    Article  CAS  PubMed  Google Scholar 

  83. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303(18):1832–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Desikan RS, Schork AJ, Wang Y, Thompson WK, Dehghan A, Ridker PM, et al. Polygenic overlap between C-reactive protein, plasma lipids, and Alzheimer disease. Circulation. 2015;131(23):2061–9. NIH Public Access.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jun GR, Chung J, Mez J, Barber R, Beecham GW, Bennett DA, et al. Transethnic genome-wide scan identifies novel Alzheimer’s disease loci. Alzheimers Dement. 2017;13(7):727–38.

    Article  PubMed  Google Scholar 

  86. Liu JZ, Erlich Y, Pickrell JK. Case-control association mapping by proxy using family history of disease. Nat Genet. 2017;49(3):325–31.

    Article  CAS  PubMed  Google Scholar 

  87. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368(2):117–27. Massachusetts Medical Society.

    Article  CAS  PubMed  Google Scholar 

  88. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013;368(2):107–16. Massachusetts Medical Society.

    Article  CAS  PubMed  Google Scholar 

  89. Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet. 2017;49(9):1373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bellenguez C, Charbonnier C, Grenier-Boley B, Quenez O, Le Guennec K, Nicolas G, et al. Contribution to Alzheimer’s disease risk of rare variants in TREM2, SORL1 and ABCA7 in 1,779 cases and 1,273 controls. Neurobiol Aging. 2017;59:220.e1–9.

    Article  CAS  Google Scholar 

  91. Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D, et al. Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet. 2014;23(21):5838–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nicolas G, Charbonnier C, Wallon D, Quenez O, Bellenguez C, Grenier-Boley B, et al. SORL1 rare variants: a major risk factor for familial early-onset Alzheimer’s disease. Mol Psychiatry. 2016;21(6):831–6. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  93. Pottier C, Hannequin D, Coutant S, Rovelet-Lecrux A, Wallon D, Rousseau S, et al. High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease. Mol Psychiatry. 2012;17(9):875–9.

    Article  CAS  PubMed  Google Scholar 

  94. Holstege H, van der Lee SJ, Hulsman M, Wong TH, van Rooij JG, Weiss M, et al. Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: a clinical interpretation strategy. Eur J Hum Genet. 2017;25(8):973–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ruiz A, Heilmann S, Becker T, Hernández I, Wagner H, Thelen M, et al. Follow-up of loci from the International Genomics of Alzheimer’s Disease Project identifies TRIP4 as a novel susceptibility gene. Transl Psychiatry. 2014;4(2):e358. Nature Publishing Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H, et al. Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nat Genet. 2015;47(5):445–7. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

    Article  CAS  PubMed  Google Scholar 

  97. Allen M, Lincoln SJ, Corda M, Watzlawik JO, Carrasquillo MM, Reddy JS, et al. ABCA7 loss-of-function variants, expression, and neurologic disease risk. Neurol Genet. 2017;3(1):e126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Cuyvers E, De Roeck A, Van den Bossche T, Van Cauwenberghe C, Bettens K, Vermeulen S, et al. Mutations in ABCA7 in a Belgian cohort of Alzheimer’s disease patients: a targeted resequencing study. Lancet Neurol. 2015;14(8):814–22.

    Article  CAS  PubMed  Google Scholar 

  99. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.

    Article  PubMed Central  CAS  Google Scholar 

  100. Kehoe PG, Russ C, McIlroy S, Williams H, Holmans P, Holmes C, et al. Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nat Genet. 1999;21(1):71–2. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  101. Lehmann DJ, Cortina-Borja M, Warden DR, Smith AD, Sleegers K, Prince JA, et al. Large meta-analysis establishes the ACE insertion-deletion polymorphism as a marker of Alzheimer’s disease. Am J Epidemiol. 2005;162(4):305–17. Oxford University Press.

    Article  PubMed  Google Scholar 

  102. Benitez BA, Jin SC, Guerreiro R, Graham R, Lord J, Harold D, et al. Missense variant in TREML2 protects against Alzheimer’s disease. Neurobiol Aging. 2014;35(6):1510.e19–26.

    Article  CAS  Google Scholar 

  103. Escott-Price V, Bellenguez C, Wang L-S, Choi S-H, Harold D, Jones L, et al. Gene-wide analysis detects two new susceptibility genes for Alzheimer’s disease. PLoS One. Public Library of Science. 2014;9(6):e94661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Lee JH, Cheng R, Barral S, Reitz C, Medrano M, Lantigua R, et al. Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean Hispanic individuals. Arch Neurol. 2011;68(3):320–8.

    Article  PubMed  Google Scholar 

  105. Logue MW, Schu M, Vardarajan BN, Buros J, Green RC, Go RCP, et al. A comprehensive genetic association study of Alzheimer disease in African Americans. Arch Neurol. 2011;68(12):1569.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sherva R, Baldwin CT, Inzelberg R, Vardarajan B, Cupples LA, Lunetta K, et al. Identification of novel candidate genes for Alzheimer’s disease by autozygosity mapping using genome wide SNP data. J Alzheimers Dis. 2011;23(2):349–59. NIH Public Access.

    CAS  PubMed  Google Scholar 

  107. Mez J, Chung J, Jun G, Kriegel J, Bourlas AP, Sherva R, et al. Two novel loci, COBL and SLC10A2, for Alzheimer’s disease in African Americans. Alzheimers Dement. 2017;13(2):119–29. NIH Public Access.

    Article  PubMed  Google Scholar 

  108. Wang H-Z, Bi R, Hu Q-X, Xiang Q, Zhang C, Zhang D-F, et al. Validating GWAS-identified risk loci for Alzheimer’s disease in Han Chinese populations. Mol Neurobiol. 2016;53(1):379–90. Springer US.

    Article  CAS  PubMed  Google Scholar 

  109. Herold C, Hooli BV, Mullin K, Liu T, Roehr JT, Mattheisen M, et al. Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer’s disease with OSBPL6, PTPRG, and PDCL3. Mol Psychiatry. 2016;21(11):1608–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lambert J-C, Grenier-Boley B, Harold D, Zelenika D, Chouraki V, Kamatani Y, et al. Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer’s disease. Mol Psychiatry. 2013;18(4):461–70.

    Article  CAS  PubMed  Google Scholar 

  111. Ebbert MTW, Ridge PG, Kauwe JSK. Bridging the gap between statistical and biological epistasis in Alzheimer’s disease. Biomed Res Int. 2015;2015:870123.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gusareva ES, Carrasquillo MM, Bellenguez C, Cuyvers E, Colon S, Graff-Radford NR, et al. Genome-wide association interaction analysis for Alzheimer’s disease. Neurobiol Aging. 2014;35(11):2436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hohman TJ, Bush WS, Jiang L, Brown-Gentry KD, Torstenson ES, Dudek SM, et al. Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium. Neurobiol Aging. 2016;38:141–50.

    Article  CAS  PubMed  Google Scholar 

  114. Wijsman EM, Pankratz ND, Choi Y, Rothstein JH, Faber KM, Cheng R, et al. Genome-wide association of familial late-onset Alzheimer’s disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS Genet. 2011;7(2):e1001308. Public Library of Science.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Coppola G, Chinnathambi S, Lee JJ, Dombroski BA, Baker MC, Soto-Ortolaza AI, et al. Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer’s diseases. Hum Mol Genet. 2012;21(15):3500–12. Oxford University Press.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Le Guennec K, Quenez O, Nicolas G, Wallon D, Rousseau S, Richard A-C, et al. 17q21.31 duplication causes prominent tau-related dementia with increased MAPT expression. Mol Psychiatry. 2017;22(8):1119–25.

    Article  PubMed  CAS  Google Scholar 

  117. Chapman J, Rees E, Harold D, Ivanov D, Gerrish A, Sims R, et al. A genome-wide study shows a limited contribution of rare copy number variants to Alzheimer’s disease risk. Hum Mol Genet. 2013;22(4):816–24.

    Article  CAS  PubMed  Google Scholar 

  118. Cuccaro D, De Marco EV, Cittadella R, Cavallaro S. Copy number variants in Alzheimer’s disease. Campion D, editor. J Alzheimers Dis. 2016;55(1):37–52. IOS Press.

    Article  PubMed Central  CAS  Google Scholar 

  119. Brouwers N, Van Cauwenberghe C, Engelborghs S, Lambert J-C, Bettens K, Le Bastard N, et al. Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry. 2012;17(2):223–33.

    Article  CAS  PubMed  Google Scholar 

  120. Dumanski JP, Lambert J-C, Rasi C, Giedraitis V, Davies H, Grenier-Boley B, et al. Mosaic loss of chromosome Y in blood is associated with Alzheimer disease. Am J Hum Genet. 2016;98(6):1208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53. Nature Publishing Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature. 2012;488(7409):96–9.

    Article  CAS  PubMed  Google Scholar 

  124. Mengel-From J, Jeune B, Pentti T, McGue M, Christensen K, Christiansen L. The APP A673T frequency differs between Nordic countries. Neurobiol Aging. 2015;36(10):2909.e1–4.

    Article  CAS  Google Scholar 

  125. Martiskainen H, Herukka S-K, Stančáková A, Paananen J, Soininen H, Kuusisto J, et al. Decreased plasma β-amyloid in the Alzheimer’s disease APP A673T variant carriers. Ann Neurol. 2017;82(1):128–32.

    Article  CAS  PubMed  Google Scholar 

  126. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lill CM, Rengmark A, Pihlstrøm L, Fogh I, Shatunov A, Sleiman PM, et al. The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimers Dement. 2015;11(12):1407–16.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Pottier C, Wallon D, Rousseau S, Rovelet-Lecrux A, Richard A-C, Rollin-Sillaire A, et al. TREM2 R47H variant as a risk factor for early-onset Alzheimer’s disease. J Alzheimers Dis. 2013;35(1):45–9.

    CAS  PubMed  Google Scholar 

  129. Huang M, Wang D, Xu Z, Xu Y, Xu X, Ma Y, et al. Lack of genetic association between TREM2 and Alzheimer’s disease in East Asian population: a systematic review and meta-analysis. Am J Alzheimers Dis Other Demen. 2015;30(6):541–6.

    Article  PubMed  Google Scholar 

  130. Jin SC, Carrasquillo MM, Benitez BA, Skorupa T, Carrell D, Patel D, et al. TREM2 is associated with increased risk for Alzheimer’s disease in African Americans. Mol Neurodegener. 2015;10:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Reitz C, Mayeux R, Alzheimer’s Disease Genetics Consortium. TREM2 and neurodegenerative disease. N Engl J Med. 2013;369(16):1564–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Verheijen J, Van den Bossche T, van der Zee J, Engelborghs S, Sanchez-Valle R, Lladó A, et al. A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer’s disease. Acta Neuropathol. 2016;132(2):213–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fernández MV, Black K, Carrell D, Saef B, Budde J, Deming Y, et al. SORL1 variants across Alzheimer’s disease European American cohorts. Eur J Hum Genet. 2016;24(12):1828–30. Nature Publishing Group.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Vardarajan BN, Zhang Y, Lee JH, Cheng R, Bohm C, Ghani M, et al. Coding mutations in SORL1 and Alzheimer disease. Ann Neurol. 2015;77(2):215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature. 2013;505(7484):550–4. Nature Publishing Group.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Cacace R, Van den Bossche T, Engelborghs S, Geerts N, Laureys A, Dillen L, et al. Rare variants in PLD3 do not affect risk for early-onset Alzheimer disease in a European Consortium Cohort. Hum Mutat. 2015;36(12):1226–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Heilmann S, Drichel D, Clarimon J, Fernández V, Lacour A, Wagner H, et al. PLD3 in non-familial Alzheimer’s disease. Nature. 2015;520(7545):E3–5.

    Article  CAS  PubMed  Google Scholar 

  138. Hooli BV, Lill CM, Mullin K, Qiao D, Lange C, Bertram L, et al. PLD3 gene variants and Alzheimer’s disease. Nature. 2015;520(7545):E7–8.

    Article  CAS  PubMed  Google Scholar 

  139. Lambert J-C, Grenier-Boley B, Bellenguez C, Pasquier F, Campion D, Dartigues J-F, et al. PLD3 and sporadic Alzheimer’s disease risk. Nature. 2015;520(7545):E1.

    Article  CAS  PubMed  Google Scholar 

  140. van der Lee SJ, Holstege H, Wong TH, Jakobsdottir J, Bis JC, Chouraki V, et al. PLD3 variants in population studies. Nature. 2015;520(7545):E2–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Schulte EC, Kurz A, Alexopoulos P, Hampel H, Peters A, Gieger C, et al. Excess of rare coding variants in PLD3 in late- but not early-onset Alzheimer’s disease. Hum Genome Var. 2015;2:14028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jakobsdottir J, van der Lee SJ, Bis JC, Chouraki V, Li-Kroeger D, Yamamoto S, et al. Rare functional variant in TM2D3 is associated with late-onset Alzheimer’s disease. Haines JL, editor. PLoS Genet. 2016;12(10):e1006327. Public Library of Science.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Wetzel-Smith MK, Hunkapiller J, Bhangale TR, Srinivasan K, Maloney JA, Atwal JK, et al. A rare mutation in UNC5C predisposes to late-onset Alzheimer’s disease and increases neuronal cell death. Nat Med. 2014;20(12):1452–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bettens K, Brouwers N, Engelborghs S, Lambert J-C, Rogaeva E, Vandenberghe R, et al. Both common variations and rare non-synonymous substitutions and small insertion/deletions in CLU are associated with increased Alzheimer risk. Mol Neurodegener. 2012;7(1):3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim JH, Song P, Lim H, Lee J-H, Lee JH, Park SA, et al. Gene-based rare allele analysis identified a risk gene of Alzheimer’s disease. PLoS One. 2014;9(10):e107983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Logue MW, Schu M, Vardarajan BN, Farrell J, Bennett DA, Buxbaum JD, et al. Two rare AKAP9 variants are associated with Alzheimer’s disease in African Americans. Alzheimers Dement. 2014;10(6):609–618.e11.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Vardarajan BN, Ghani M, Kahn A, Sheikh S, Sato C, Barral S, et al. Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci. Ann Neurol. 2015;78(3):487–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jones L, Holmans PA, Hamshere ML, Harold D, Moskvina V, Ivanov D, et al. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. El Khoury J, editor. PLoS One. 2010;5(11):e13950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Lambert J-C, Grenier-Boley B, Chouraki V, Heath S, Zelenika D, Fievet N, et al. Implication of the immune system in Alzheimer’s disease: evidence from genome-wide pathway analysis. J Alzheimers Dis. 2010;20(4):1107–18.

    Article  CAS  PubMed  Google Scholar 

  150. Jones L, Lambert J-C, Wang L-S, Choi S-H, Harold D, Vedernikov A, et al. Convergent genetic and expression data implicate immunity in Alzheimer’s disease. Alzheimers Dement. 2015;11(6):658–71.

    Article  Google Scholar 

  151. Huang K-L, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci. 2017;20(8):1052–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang Y, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT, et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med. 2016;213(5):667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yuan P, Condello C, Keene CD, Wang Y, Bird TD, Paul SM, et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron. 2016;90(4):724–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lambert J-C, Amouyel P. Genetics of Alzheimer’s disease: new evidences for an old hypothesis? Curr Opin Genet Dev. 2011;21(3):295–301.

    Article  CAS  PubMed  Google Scholar 

  155. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, et al. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med. 2011;3(89):89ra57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci. 2015;18(7):978–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Caglayan S, Takagi-Niidome S, Liao F, Carlo A-S, Schmidt V, Burgert T, et al. Lysosomal sorting of amyloid-β by the SORLA receptor is impaired by a familial Alzheimer’s disease mutation. Sci Transl Med. 2014;6(223):223ra20.

    Article  PubMed  CAS  Google Scholar 

  158. Young JE, Boulanger-Weill J, Williams DA, Woodruff G, Buen F, Revilla AC, et al. Elucidating molecular phenotypes caused by the SORL1 Alzheimer’s disease genetic risk factor using human induced pluripotent stem cells. Cell Stem Cell. 2015;16(4):373–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sakae N, Liu C-C, Shinohara M, Frisch-Daiello J, Ma L, Yamazaki Y, et al. ABCA7 deficiency accelerates amyloid-β generation and Alzheimer’s neuronal pathology. J Neurosci. 2016;36(13):3848–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Satoh K, Abe-Dohmae S, Yokoyama S, St George-Hyslop P, Fraser PE. ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing. J Biol Chem. 2015;290(40):24152–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Le Guennec K, Nicolas G, Quenez O, Charbonnier C, Wallon D, Bellenguez C, et al. ABCA7 rare variants and Alzheimer disease risk. Neurology. 2016;86(23):2134–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Chapuis J, Flaig A, Grenier-Boley B, Eysert F, Pottiez V, Deloison G, et al. Genome-wide, high-content siRNA screening identifies the Alzheimer’s genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathol. 2017;133(6):955–66.

    Article  CAS  PubMed  Google Scholar 

  163. Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen KV, et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry. 2013;18(11):1225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sottejeau Y, Bretteville A, Cantrelle F-X, Malmanche N, Demiaute F, Mendes T, et al. Tau phosphorylation regulates the interaction between BIN1’s SH3 domain and Tau’s proline-rich domain. Acta Neuropathol Commun. 2015;3(1):58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Dourlen P, Fernandez-Gomez FJ, Dupont C, Grenier-Boley B, Bellenguez C, Obriot H, et al. Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Mol Psychiatry. 2017;22(6):874–83.

    Article  CAS  PubMed  Google Scholar 

  166. Shulman JM, Imboywa S, Giagtzoglou N, Powers MP, Hu Y, Devenport D, et al. Functional screening in Drosophila identifies Alzheimer’s disease susceptibility genes and implicates Tau-mediated mechanisms. Hum Mol Genet. 2014;23(4):870–7.

    Article  CAS  PubMed  Google Scholar 

  167. Ando K, Brion J-P, Stygelbout V, Suain V, Authelet M, Dedecker R, et al. Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer’s brains. Acta Neuropathol. 2013;125(6):861–78.

    Article  CAS  PubMed  Google Scholar 

  168. Ando K, Tomimura K, Sazdovitch V, Suain V, Yilmaz Z, Authelet M, et al. Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease. Neurobiol Dis. 2016;94:32–43.

    Article  CAS  PubMed  Google Scholar 

  169. Tian Y, Chang JC, Fan EY, Flajolet M, Greengard P. Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer’s APP-CTF for terminal degradation via autophagy. Proc Natl Acad Sci U S A. 2013;110(42):17071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Miyagawa T, Ebinuma I, Morohashi Y, Hori Y, Young Chang M, Hattori H, et al. BIN1 regulates BACE1 intracellular trafficking and amyloid-β production. Hum Mol Genet. 2016;25(14):2948–58.

    CAS  PubMed  Google Scholar 

  171. Ubelmann F, Burrinha T, Salavessa L, Gomes R, Ferreira C, Moreno N, et al. Bin1 and CD2AP polarise the endocytic generation of beta-amyloid. EMBO Rep. 2017;18(1):102–22.

    Article  CAS  PubMed  Google Scholar 

  172. Escott-Price V, Sims R, Bannister C, Harold D, Vronskaya M, Majounie E, et al. Common polygenic variation enhances risk prediction for Alzheimer’s disease. Brain. 2015;138(Pt 12):3673–84.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Desikan RS, Fan CC, Wang Y, Schork AJ, Cabral HJ, Cupples LA, et al. Genetic assessment of age-associated Alzheimer disease risk: development and validation of a polygenic hazard score. Brayne C, editor. PLoS Med. 2017;14(3):e1002258.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Chouraki V, Reitz C, Maury F, Bis JC, Bellenguez C, Yu L, et al. Evaluation of a genetic risk score to improve risk prediction for Alzheimer’s disease. Hall A, editor. J Alzheimers Dis. 2016;53(3):921–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Bellenguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bellenguez, C., Lambert, JC. (2018). Genetic Risk Factors for Complex Forms of Alzheimer’s Disease. In: Galimberti, D., Scarpini, E. (eds) Neurodegenerative Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-72938-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72938-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72937-4

  • Online ISBN: 978-3-319-72938-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics