Skip to main content

Genetic Complexity of Early-Onset Alzheimer’s Disease

  • Chapter
  • First Online:
Neurodegenerative Diseases

Abstract

The recent advances in “omics” technologies (e.g., next-generation sequencing) have made the precision medicine possible. Knowledge about genetics of Alzheimer’s disease (AD), the most prevalent form of dementia, is important to manage the challenges of aging populations. So far, genetic analyses of families with autosomal dominant AD, presenting with early-onset dementia (<65 years of age), have found three causal genes: APP, PSEN1, and PSEN2. Genetics is now widely applied to AD diagnosis, monitoring, and the search for a potential treatment. The ability to detect carriers of causal mutations could help to evaluate the efficacy of AD therapies in the longitudinal clinical trials of the individuals at either pre-symptomatic or early stages of dementia. We provide an overview for the molecular genetic findings available for early-onset AD; discuss how this knowledge can be applied in clinical practice and highlight strategies to detect novel AD genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jonsson T, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013;368(2):107–16.

    Article  CAS  PubMed  Google Scholar 

  2. Matthews FE, et al. A two decade dementia incidence comparison from the Cognitive Function and Ageing Studies I and II. Nat Commun. 2016;7:11398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hardy J, Rogaeva E. Motor neuron disease and frontotemporal dementia: sometimes related, sometimes not. Exp Neurol. 2014;262(Pt B):75–83.

    Article  CAS  PubMed  Google Scholar 

  4. Mayeux R. Epidemiology of neurodegeneration. Annu Rev Neurosci. 2003;26:81–104.

    Article  CAS  PubMed  Google Scholar 

  5. Hebert LE, et al. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology. 2013;80(19):1778–83.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stefanacci RG. The costs of Alzheimer’s disease and the value of effective therapies. Am J Manag Care. 2011;17(Suppl 13):S356–62.

    PubMed  Google Scholar 

  7. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5.

    Article  CAS  PubMed  Google Scholar 

  8. St George-Hyslop PH, Petit A. Molecular biology and genetics of Alzheimer’s disease. C R Biol. 2005;328(2):119–30.

    Article  CAS  PubMed  Google Scholar 

  9. Lippa CF, et al. Abeta-42 deposition precedes other changes in PS-1 Alzheimer’s disease. Lancet. 1998;352(9134):1117–8.

    Article  CAS  PubMed  Google Scholar 

  10. Cho H, et al. Excessive tau accumulation in the parieto-occipital cortex characterizes early-onset Alzheimer’s disease. Neurobiol Aging. 2017;53:103–11.

    Article  CAS  PubMed  Google Scholar 

  11. Wingo TS, et al. Autosomal recessive causes likely in early-onset Alzheimer disease. Arch Neurol. 2012;69(1):59–64.

    Article  PubMed  Google Scholar 

  12. Gatz M, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74.

    Article  PubMed  Google Scholar 

  13. Jarmolowicz AI, Chen HY, Panegyres PK. The patterns of inheritance in early-onset dementia: Alzheimer’s disease and frontotemporal dementia. Am J Alzheimers Dis Other Demen. 2015;30(3):299–306.

    Article  PubMed  Google Scholar 

  14. van Duijn CM, et al. Apolipoprotein E4 allele in a population-based study of early-onset Alzheimer’s disease. Nat Genet. 1994;7(1):74–8.

    Article  PubMed  Google Scholar 

  15. Campion D, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet. 1999;65(3):664–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goate A, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349(6311):704–6.

    Article  CAS  PubMed  Google Scholar 

  17. Sherrington R, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375(6534):754–60.

    Article  CAS  PubMed  Google Scholar 

  18. Levy-Lahad E, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269(5226):973–7.

    Article  CAS  PubMed  Google Scholar 

  19. Rogaev EI, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 1995;376(6543):775–8.

    Article  CAS  PubMed  Google Scholar 

  20. Raber J, Huang Y, Ashford JW. ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging. 2004;25(5):641–50.

    Article  CAS  PubMed  Google Scholar 

  21. Rogaeva E, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet. 2007;39(2):168–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harold D, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lambert JC, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.

    Article  CAS  PubMed  Google Scholar 

  24. Carrasquillo MM, et al. Replication of CLU, CR1, and PICALM associations with Alzheimer disease. Arch Neurol. 2010;67(8):961–4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Naj AC, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43(5):436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hollingworth P, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43(5):429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lambert JC, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sims R, et al. Rare coding variants in PLCG2, ABI3 and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet. 2017;49(9):1373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bignante EA, et al. Amyloid beta precursor protein as a molecular target for amyloid beta-induced neuronal degeneration in Alzheimer’s disease. Neurobiol Aging. 2013;34(11):2525–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Postina R. Activation of alpha-secretase cleavage. J Neurochem. 2012;120(Suppl 1):46–54.

    Article  CAS  PubMed  Google Scholar 

  31. Allinson TM, et al. ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res. 2003;74(3):342–52.

    Article  CAS  PubMed  Google Scholar 

  32. Nicolaou M, et al. Mutations in the open reading frame of the beta-site APP cleaving enzyme (BACE) locus are not a common cause of Alzheimer’s disease. Neurogenetics. 2001;3(4):203–6.

    CAS  PubMed  Google Scholar 

  33. Cruts M, et al. Amyloid beta secretase gene (BACE) is neither mutated in nor associated with early-onset Alzheimer’s disease. Neurosci Lett. 2001;313(1–2):105–7.

    Article  CAS  PubMed  Google Scholar 

  34. Citron M, et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature. 1992;360(6405):672–4.

    Article  CAS  PubMed  Google Scholar 

  35. Wolfe MS. The gamma-secretase complex: membrane-embedded proteolytic ensemble. Biochemistry. 2006;45(26):7931–9.

    Article  CAS  PubMed  Google Scholar 

  36. Selkoe DJ, Wolfe MS. Presenilin: running with scissors in the membrane. Cell. 2007;131(2):215–21.

    Article  CAS  PubMed  Google Scholar 

  37. Qiang W, et al. Structural variation in amyloid-beta fibrils from Alzheimer’s disease clinical subtypes. Nature. 2017;541(7636):217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gervais FG, et al. Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell. 1999;97(3):395–406.

    Article  CAS  PubMed  Google Scholar 

  39. Lu DC, et al. A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor. Nat Med. 2000;6(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  40. Sisodia SS, St George-Hyslop PH. gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci. 2002;3(4):281–90.

    Article  CAS  PubMed  Google Scholar 

  41. Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat. 2012;33(9):1340–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rovelet-Lecrux A, et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet. 2006;38(1):24–6.

    Article  CAS  PubMed  Google Scholar 

  43. Guyant-Marechal I, et al. Intrafamilial diversity of phenotype associated with app duplication. Neurology. 2008;71(23):1925–6.

    Article  CAS  PubMed  Google Scholar 

  44. Levy E, et al. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science. 1990;248(4959):1124–6.

    Article  CAS  PubMed  Google Scholar 

  45. Van Broeckhoven C, et al. Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science. 1990;248(4959):1120–2.

    Article  PubMed  Google Scholar 

  46. Fernandez-Madrid I, et al. Codon 618 variant of Alzheimer amyloid gene associated with inherited cerebral hemorrhage. Ann Neurol. 1991;30(5):730–3.

    Article  CAS  PubMed  Google Scholar 

  47. Bornebroek M, et al. Hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D): I—a review of clinical, radiologic and genetic aspects. Brain Pathol. 1996;6(2):111–4.

    Article  CAS  PubMed  Google Scholar 

  48. Bugiani O, et al. Hereditary cerebral hemorrhage with amyloidosis associated with the E693K mutation of APP. Arch Neurol. 2010;67(8):987–95.

    Article  PubMed  Google Scholar 

  49. Kamino K, et al. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am J Hum Genet. 1992;51(5):998–1014.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nilsberth C, et al. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci. 2001;4(9):887–93.

    Article  CAS  PubMed  Google Scholar 

  51. Tomiyama T, et al. A new amyloid beta variant favoring oligomerization in Alzheimer’s-type dementia. Ann Neurol. 2008;63(3):377–87.

    Article  CAS  PubMed  Google Scholar 

  52. Grabowski TJ, et al. Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol. 2001;49(6):697–705.

    Article  CAS  PubMed  Google Scholar 

  53. Greenberg SM, et al. Hemorrhagic stroke associated with the Iowa amyloid precursor protein mutation. Neurology. 2003;60(6):1020–2.

    Article  CAS  PubMed  Google Scholar 

  54. Hendriks L, et al. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat Genet. 1992;1(3):218–21.

    Article  CAS  PubMed  Google Scholar 

  55. Roks G, et al. Presentation of amyloidosis in carriers of the codon 692 mutation in the amyloid precursor protein gene (APP692). Brain. 2000;123(Pt 10):2130–40.

    Article  PubMed  Google Scholar 

  56. Kumar-Singh S, et al. Dense-core senile plaques in the Flemish variant of Alzheimer’s disease are vasocentric. Am J Pathol. 2002;161(2):507–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Domingues-Montanari S, et al. No evidence of APP point mutation and locus duplication in individuals with cerebral amyloid angiopathy. Eur J Neurol. 2011;18(10):1279–81.

    Article  CAS  PubMed  Google Scholar 

  58. Haass C, et al. Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem. 1994;269(26):17741–8.

    CAS  PubMed  Google Scholar 

  59. Kumar-Singh S, et al. Nonfibrillar diffuse amyloid deposition due to a gamma(42)-secretase site mutation points to an essential role for N-truncated A beta(42) in Alzheimer’s disease. Hum Mol Genet. 2000;9(18):2589–98.

    Article  CAS  PubMed  Google Scholar 

  60. De Jonghe C, et al. Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. Hum Mol Genet. 2001;10(16):1665–71.

    Article  PubMed  Google Scholar 

  61. Cruts M, et al. Novel APP mutation V715A associated with presenile Alzheimer’s disease in a German family. J Neurol. 2003;250(11):1374–5.

    Article  PubMed  Google Scholar 

  62. Eckman CB, et al. A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Hum Mol Genet. 1997;6(12):2087–9.

    Article  CAS  PubMed  Google Scholar 

  63. Herl L, et al. Mutations in amyloid precursor protein affect its interactions with presenilin/gamma-secretase. Mol Cell Neurosci. 2009;41(2):166–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Citron M, et al. Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc Natl Acad Sci U S A. 1994;91(25):11993–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Perez RG, Squazzo SL, Koo EH. Enhanced release of amyloid beta-protein from codon 670/671 “Swedish” mutant beta-amyloid precursor protein occurs in both secretory and endocytic pathways. J Biol Chem. 1996;271(15):9100–7.

    Article  CAS  PubMed  Google Scholar 

  66. Kirkitadze MD, Condron MM, Teplow DB. Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol. 2001;312(5):1103–19.

    Article  CAS  PubMed  Google Scholar 

  67. Mullan M, et al. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet. 1992;1(5):345–7.

    Article  CAS  PubMed  Google Scholar 

  68. Jonsson T, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature. 2012;488(7409):96–9.

    Article  CAS  PubMed  Google Scholar 

  69. Wang LS, et al. Rarity of the Alzheimer disease-protective APP A673T variant in the United States. JAMA Neurol. 2015;72(2):209–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Di Fede G, et al. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science. 2009;323(5920):1473–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ghani M, et al. Evidence of recessive Alzheimer’s disease loci in Caribbean Hispanics: genome-wide survey of runs of homozygosity. JAMA Neurol. 2013;70:1261–7.

    PubMed  PubMed Central  Google Scholar 

  72. Ghani M, et al. Genome-wide survey of large rare copy number variants in Alzheimer’s disease among Caribbean hispanics. G3 (Bethesda). 2012;2(1):71–8.

    Article  CAS  Google Scholar 

  73. Hazrati LN, et al. Genetic association of CR1 with Alzheimer’s disease: a tentative disease mechanism. Neurobiol Aging. 2012;33(12):2949.e5–12.

    Article  CAS  Google Scholar 

  74. Hooli BV, et al. Rare autosomal copy number variations in early-onset familial Alzheimer’s disease. Mol Psychiatry. 2014;19(6):676–81.

    Article  CAS  PubMed  Google Scholar 

  75. St George-Hyslop P, et al. Alzheimer’s disease and possible gene interaction. Science. 1994;263(5146):537.

    Article  CAS  PubMed  Google Scholar 

  76. Wilhelmus MM, et al. Apolipoprotein E genotype regulates amyloid-beta cytotoxicity. J Neurosci. 2005;25(14):3621–7.

    Article  CAS  PubMed  Google Scholar 

  77. Schellenberg GD, et al. Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science. 1992;258(5082):668–71.

    Article  CAS  PubMed  Google Scholar 

  78. St George-Hyslop P, et al. Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nat Genet. 1992;2(4):330–4.

    Article  CAS  PubMed  Google Scholar 

  79. Hruz T, et al. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinforma. 2008;2008:420747.

    Article  Google Scholar 

  80. Haass C, De Strooper B. The presenilins in Alzheimer’s disease—proteolysis holds the key. Science. 1999;286(5441):916–9.

    Article  CAS  PubMed  Google Scholar 

  81. Yu G, et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature. 2000;407(6800):48–54.

    Article  CAS  PubMed  Google Scholar 

  82. St George-Hyslop P, Fraser PE. Assembly of the presenilin gamma-/epsilon-secretase complex. J Neurochem. 2012;120(Suppl 1):84–8.

    Article  PubMed  CAS  Google Scholar 

  83. Borchelt DR, et al. Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron. 1996;17(5):1005–13.

    Article  CAS  PubMed  Google Scholar 

  84. Lemere CA, et al. The E280A presenilin 1 Alzheimer mutation produces increased A beta 42 deposition and severe cerebellar pathology. Nat Med. 1996;2(10):1146–50.

    Article  CAS  PubMed  Google Scholar 

  85. Mann DM, et al. Amyloid beta protein (Abeta) deposition in chromosome 14-linked Alzheimer’s disease: predominance of Abeta42(43). Ann Neurol. 1996;40(2):149–56.

    Article  CAS  PubMed  Google Scholar 

  86. Mann DM, et al. Amyloid (Abeta) deposition in chromosome 1-linked Alzheimer’s disease: the Volga German families. Ann Neurol. 1997;41(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  87. Wolfe MS, et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature. 1999;398(6727):513–7.

    Article  CAS  PubMed  Google Scholar 

  88. Fluhrer R, et al. Intramembrane proteolysis of GXGD-type aspartyl proteases is slowed by a familial Alzheimer disease-like mutation. J Biol Chem. 2008;283(44):30121–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Crook R, et al. A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med. 1998;4(4):452–5.

    Article  CAS  PubMed  Google Scholar 

  90. Rogaeva EA, et al. Screening for PS1 mutations in a referral-based series of AD cases: 21 novel mutations. Neurology. 2001;57(4):621–5.

    Article  CAS  PubMed  Google Scholar 

  91. De Jonghe C, et al. Aberrant splicing in the presenilin-1 intron 4 mutation causes presenile Alzheimer’s disease by increased Abeta42 secretion. Hum Mol Genet. 1999;8(8):1529–40.

    Article  PubMed  Google Scholar 

  92. Muller U, Winter P, Graeber MB. A presenilin 1 mutation in the first case of Alzheimer’s disease. Lancet Neurol. 2013;12(2):129–30.

    Article  PubMed  Google Scholar 

  93. Benitez BA, et al. The PSEN1, p.E318G variant increases the risk of Alzheimer’s disease in APOE-epsilon4 carriers. PLoS Genet. 2013;9(8):e1003685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Snider BJ, et al. Novel presenilin 1 mutation (S170F) causing Alzheimer disease with Lewy bodies in the third decade of life. Arch Neurol. 2005;62(12):1821–30.

    Article  PubMed  Google Scholar 

  95. Yescas P, et al. Founder effect for the Ala431Glu mutation of the presenilin 1 gene causing early-onset Alzheimer’s disease in Mexican families. Neurogenetics. 2006;7(3):195–200.

    Article  CAS  PubMed  Google Scholar 

  96. Murrell J, et al. The A431E mutation in PSEN1 causing familial Alzheimer’s disease originating in Jalisco State, Mexico: an additional fifteen families. Neurogenetics. 2006;7(4):277–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Athan ES, et al. A founder mutation in presenilin 1 causing early-onset Alzheimer disease in unrelated Caribbean Hispanic families. JAMA. 2001;286(18):2257–63.

    Article  CAS  PubMed  Google Scholar 

  98. Lee JH, et al. Genetic modifiers of age at onset in carriers of the G206A mutation in PSEN1 with familial Alzheimer disease among Caribbean Hispanics. JAMA Neurol. 2015;72(9):1043–51.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tang MX, et al. Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan. Neurology. 2001;56(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  100. Rogaeva E. The solved and unsolved mysteries of the genetics of early-onset Alzheimer’s disease. Neuromolecular Med. 2002;2(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  101. Le TV, et al. Cotton wool plaques in non-familial late-onset Alzheimer disease. J Neuropathol Exp Neurol. 2001;60(11):1051–61.

    Article  CAS  PubMed  Google Scholar 

  102. Matsubara-Tsutsui M, et al. Molecular evidence of presenilin 1 mutation in familial early onset dementia. Am J Med Genet. 2002;114(3):292–8.

    Article  PubMed  Google Scholar 

  103. Hiltunen M, et al. Identification of a novel 4.6-kb genomic deletion in presenilin-1 gene which results in exclusion of exon 9 in a Finnish early onset Alzheimer’s disease family: an Alu core sequence-stimulated recombination? Eur J Hum Genet. 2000;8(4):259–66.

    Article  CAS  PubMed  Google Scholar 

  104. Smith MJ, et al. Variable phenotype of Alzheimer’s disease with spastic paraparesis. Ann Neurol. 2001;49(1):125–9.

    Article  CAS  PubMed  Google Scholar 

  105. Sinha N, et al. Variant Alzheimer’s disease with spastic paraparesis and supranuclear gaze palsy. Can J Neurol Sci. 2013;40(2):249–51.

    Article  PubMed  Google Scholar 

  106. Li D, et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am J Hum Genet. 2006;79(6):1030–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dermaut B, et al. A novel presenilin 1 mutation associated with Pick’s disease but not beta-amyloid plaques. Ann Neurol. 2004;55(5):617–26.

    Article  CAS  PubMed  Google Scholar 

  108. Sitek EJ, et al. A patient with posterior cortical atrophy possesses a novel mutation in the presenilin 1 gene. PLoS One. 2013;8(4):e61074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mahoney CJ, et al. The presenilin 1 P264L mutation presenting as non-fluent/agrammatic primary progressive aphasia. J Alzheimers Dis. 2013;36(2):239–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Braga-Neto P, et al. Early-onset familial Alzheimer’s disease related to presenilin 1 mutation resembling autosomal dominant spinocerebellar ataxia. J Neurol. 2013;260(4):1177–9.

    Article  PubMed  Google Scholar 

  111. Amtul Z, et al. A presenilin 1 mutation associated with familial frontotemporal dementia inhibits gamma-secretase cleavage of APP and notch. Neurobiol Dis. 2002;9(2):269–73.

    Article  CAS  PubMed  Google Scholar 

  112. Pickering-Brown SM, et al. Mutations in progranulin explain atypical phenotypes with variants in MAPT. Brain. 2006;129(Pt 11):3124–6.

    Article  PubMed  Google Scholar 

  113. Raux G, et al. Dementia with prominent frontotemporal features associated with L113P presenilin 1 mutation. Neurology. 2000;55(10):1577–8.

    Article  CAS  PubMed  Google Scholar 

  114. Shen J, et al. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell. 1997;89(4):629–39.

    Article  CAS  PubMed  Google Scholar 

  115. Wang B, et al. Gamma-secretase gene mutations in familial acne inversa. Science. 2010;330(6007):1065.

    Article  CAS  PubMed  Google Scholar 

  116. Kimberly WT, et al. The transmembrane aspartates in presenilin 1 and 2 are obligatory for gamma-secretase activity and amyloid beta-protein generation. J Biol Chem. 2000;275(5):3173–8.

    Article  CAS  PubMed  Google Scholar 

  117. Jayadev S, et al. Presenilin 2 is the predominant gamma-secretase in microglia and modulates cytokine release. PLoS One. 2010;5(12):e15743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li J, et al. Alzheimer presenilins in the nuclear membrane, interphase kinetochores, and centrosomes suggest a role in chromosome segregation. Cell. 1997;90(5):917–27.

    Article  CAS  PubMed  Google Scholar 

  119. Blauwendraat C, et al. Pilot whole-exome sequencing of a German early-onset Alzheimer’s disease cohort reveals a substantial frequency of PSEN2 variants. Neurobiol Aging. 2016;37:208.e11–7.

    Article  CAS  Google Scholar 

  120. Bird TD, et al. Wide range in age of onset for chromosome 1—related familial Alzheimer’s disease. Ann Neurol. 1996;40(6):932–6.

    Article  CAS  PubMed  Google Scholar 

  121. Lao JI, et al. A novel mutation in the predicted TM2 domain of the presenilin 2 gene in a Spanish patient with late-onset Alzheimer’s disease. Neurogenetics. 1998;1(4):293–6.

    Article  CAS  PubMed  Google Scholar 

  122. Ezquerra M, et al. A novel mutation in the PSEN2 gene (T430M) associated with variable expression in a family with early-onset Alzheimer disease. Arch Neurol. 2003;60(8):1149–51.

    Article  PubMed  Google Scholar 

  123. Marchani EE, et al. Evidence for three loci modifying age-at-onset of Alzheimer’s disease in early-onset PSEN2 families. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(5):1031–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Piscopo P, et al. A novel PSEN2 mutation associated with a peculiar phenotype. Neurology. 2008;70(17):1549–54.

    Article  CAS  PubMed  Google Scholar 

  125. Lippa CF, et al. Lewy bodies contain altered alpha-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am J Pathol. 1998;153(5):1365–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement. 2016;12(6):733–48.

    Article  PubMed  Google Scholar 

  127. Pottier C, et al. High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease. Mol Psychiatry. 2012;17(9):875–9.

    Article  CAS  PubMed  Google Scholar 

  128. Pastor P, et al. Apolipoprotein Eepsilon4 modifies Alzheimer’s disease onset in an E280A PS1 kindred. Ann Neurol. 2003;54(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  129. Dermaut B, et al. PRNP Val129 homozygosity increases risk for early-onset Alzheimer’s disease. Ann Neurol. 2003;53(3):409–12.

    Article  CAS  PubMed  Google Scholar 

  130. Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lou F, et al. Very early-onset sporadic Alzheimer’s disease with a de novo mutation in the PSEN1 gene. Neurobiol Aging. 2017;53:193.e1–5.

    Article  CAS  Google Scholar 

  132. Rogaeva E, Schmitt-Ulms G. Does BDNF Val66Met contribute to preclinical Alzheimer’s disease? Brain. 2016;139(Pt 10):2586–9.

    Article  PubMed  Google Scholar 

  133. Guerreiro R, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368(2):117–27.

    Article  CAS  PubMed  Google Scholar 

  134. Suarez-Calvet M, et al. Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury. Sci Transl Med. 2016;8(369):369ra178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Ghani M, et al. Mutation analysis of patients with neurodegenerative disorders using NeuroX array. Neurobiol Aging. 2015;36(1):545.e9–14.

    Article  CAS  Google Scholar 

  136. Blauwendraat C, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging. 2017;57:247.e9–13.

    Article  CAS  Google Scholar 

  137. Ghani M, et al. Mutation analysis of the MS4A and TREM gene clusters in a case-control Alzheimer’s disease data set. Neurobiol Aging. 2016;42:217.e7–13.

    Article  CAS  Google Scholar 

  138. Vardarajan BN, et al. Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci. Ann Neurol. 2015;78(3):487–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vardarajan BN, et al. Coding mutations in SORL1 and Alzheimer disease. Ann Neurol. 2015;77(2):215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang M, et al. Drug repositioning for Alzheimer’s disease based on systematic ‘omics’ data mining. PLoS One. 2016;11(12):e0168812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron. 2010;68(2):270–81.

    Article  CAS  PubMed  Google Scholar 

  142. Kuwano R, Hara N. Personal genomics for Alzheimer’s disease. Brain Nerve (Shinkei kenkyu no shinpo). 2013;65(3):235–46.

    CAS  Google Scholar 

  143. Choi M, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106(45):19096–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ng SB, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pruitt KD, et al. The consensus coding sequence (CCDS) project: identifying a common protein-coding gene set for the human and mouse genomes. Genome Res. 2009;19(7):1316–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Barral S, et al. Linkage analyses in Caribbean Hispanic families identify novel loci associated with familial late-onset Alzheimer’s disease. Alzheimers Dement. 2015;11(12):1397–406.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kunkle BW, et al. Genome-wide linkage analyses of non-Hispanic white families identify novel loci for familial late-onset Alzheimer’s disease. Alzheimers Dement. 2016;12(1):2–10.

    Article  PubMed  Google Scholar 

  148. MacArthur DG, Tyler-Smith C. Loss-of-function variants in the genomes of healthy humans. Hum Mol Genet. 2011;19(R2):R125–30.

    Article  CAS  Google Scholar 

  149. Cruchaga C, et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature. 2014;505(7484):550–4.

    Article  CAS  PubMed  Google Scholar 

  150. Bras J, et al. Exome sequencing in a consanguineous family clinically diagnosed with early-onset Alzheimer’s disease identifies a homozygous CTSF mutation. Neurobiol Aging. 2016;46:236.e1–6.

    Article  CAS  Google Scholar 

  151. Beck JA, et al. Somatic and germline mosaicism in sporadic early-onset Alzheimer’s disease. Hum Mol Genet. 2004;13(12):1219–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the support from the Canadian Institutes of Health Research, Wellcome Trust, Medical Research Council, National Institutes of Health, and the Canadian Consortium on Neurodegeneration in Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Rogaeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghani, M., Reitz, C., George-Hyslop, P.S., Rogaeva, E. (2018). Genetic Complexity of Early-Onset Alzheimer’s Disease. In: Galimberti, D., Scarpini, E. (eds) Neurodegenerative Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-72938-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72938-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72937-4

  • Online ISBN: 978-3-319-72938-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics