Skip to main content

Biomarkers for Alzheimer’s Disease and Frontotemporal Lobar Degeneration: Imaging

  • Chapter
  • First Online:
Book cover Neurodegenerative Diseases
  • 1368 Accesses

Abstract

Neuroimaging has become an invaluable tool for the clinical management of patients with cognitive decline and for research purposes. In clinical setting, structural and functional information on the brain tissue damage contributes to define the diagnosis of the major forms of dementia since their early clinical stages. From the research side, quantitative neuroimaging techniques have contributed in clarifying some critical pathophysiological aspects of dementias, playing the unique role of linking together measures of cognitive and behavioural impairment and the presence and distribution of brain tissue abnormalities. Positron emission tomography provides not only information on abnormal brain metabolism, but also on the brain deposition of pathogenic molecules, such as beta-amyloid and tau. On the other hand, quantitative MRI provides information on microstructural brain abnormalities as well as on functional and structural connectivity. In this chapter we review the role of these neuroimaging techniques with a special focus on Alzheimer’s disease and frontotemporal dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGinnis SM. Neuroimaging in neurodegenerative dementias. Semin Neurol. 2012;32(4):347–60.

    PubMed  Google Scholar 

  2. Bozzali M, Serra L, Cercignani M. Quantitative MRI to understand Alzheimer’s disease pathophysiology. Curr Opin Neurol. 2016;29(4):437–44.

    Article  PubMed  Google Scholar 

  3. Iaccarino L, Chiotis K, Alongi P, Almkvist O, Wall A, Cerami C, Bettinardi V, Gianolli L, Nordberg A, Perani D. A cross-validation of FDG- and amyloid-PET biomarkers in mild cognitive impairment for the risk prediction to dementia due to Alzheimer’s disease in a clinical setting. J Alzheimers Dis. 2017;59(2):603–14.

    Article  CAS  PubMed  Google Scholar 

  4. Jack CR Jr, Wiste HJ, Weigand SD, Therneau TM, Knopman DS, Lowe V, Vemuri P, Mielke MM, Roberts RO, Machulda MM, Senjem ML, Gunter JL, Rocca WA, Petersen RC. Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50-95 years: a cross-sectional study. Lancet Neurol. 2017;16(6):435–44.

    Article  CAS  PubMed  Google Scholar 

  5. Cummings JL. Toward a molecular neuropsychiatry of neurodegenerative diseases. Ann Neurol. 2003;54(2):147–54.

    Article  CAS  PubMed  Google Scholar 

  6. Gili T, Cercignani M, Serra L, Perri R, Giove F, Maraviglia B, Caltagirone C, Bozzali M. Regional brain atrophy and functional disconnection across Alzheimer’s disease evolution. J Neurol Neurosurg Psychiatry. 2011;82(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  7. Borroni B, Alberici A, Cercignani M, Premi E, Serra L, Cerini C, Cosseddu M, Pettenati C, Turla M, Archetti S, Gasparotti R, Caltagirone C, Padovani A, Bozzali M. Granulin mutation drives brain damage and reorganization from preclinical to symptomatic FTLD. Neurobiol Aging. 2012;33(10):2506–20.

    Article  CAS  PubMed  Google Scholar 

  8. Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer’s disease. Arch Med Res. 2012;43(8):600–8.

    Article  PubMed  Google Scholar 

  9. Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  10. Markesbery WR. Neuropathologic alterations in mild cognitive impairment: a review. J Alzheimers Dis. 2010;19(1):221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, Kuiper M, Steinling M, Wolters EC, Valk J. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55(10):967–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjögren M, Wallin A, Ader H, Leys D, Pantoni L, Pasquier F, Erkinjuntti T, Scheltens P. European task force on age-related white matter changes. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32(6):1318–22.

    Article  CAS  PubMed  Google Scholar 

  14. Ridha BH, Barnes J, van de Pol LA, Schott JM, Boyes RG, Siddique MM, Rossor MN, Scheltens P, Fox NC. Application of automated medial temporal lobe atrophy scale to Alzheimer disease. Arch Neurol. 2007;64(6):849–54.

    Article  PubMed  Google Scholar 

  15. Persson K, Barca ML, Eldholm RS, Cavallin L, Šaltytė Benth J, Selbæk G, Brækhus A, Saltvedt I, Engedal K. Visual evaluation of medial temporal lobe atrophy as a clinical marker of conversion from mild cognitive impairment to dementia and for predicting progression in patients with mild cognitive impairment and mild Alzheimer’s disease. Dement Geriatr Cogn Disord. 2017;44(1–2):12–24.

    Article  PubMed  Google Scholar 

  16. Claus JJ, Staekenborg SS, Holl DC, Roorda JJ, Schuur J, Koster P, Tielkes CE, Scheltens P. Practical use of visual medial temporal lobe atrophy cut-off scores in Alzheimer’s disease: validation in a large memory clinic population. Eur Radiol. 2017;27:3147–55.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fazekas F, Chawluk JB, Alvavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5T in Alzheimer’s disease and normal aging. AJNR. 1987;8:421–6.

    Google Scholar 

  18. Marnane M, Al-Jawadi OO, Mortazavi S, Pogorzelec KJ, Wang BW, Feldman HH, Hsiung GY, Alzheimer’s Disease Neuroimaging Initiative. Periventricular hyperintensities are associated with elevated cerebral amyloid. Neurology. 2016;86(6):535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seab JP, Jagust WJ, Wong ST, Roos MS, Reed BR, Budinger TF. Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Reson Med. 1988;8(2):200–8.

    Article  CAS  PubMed  Google Scholar 

  20. Convit A, De Leon MJ, Tarshish C, De Santi S, Tsui W, Rusinek H, George A. Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiol Aging. 1997;18(2):131–8.

    Article  CAS  PubMed  Google Scholar 

  21. Jack CR Jr, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology. 1999;52(7):1397–403.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mondragón JD, Celada-Borja C, Barinagarrementeria-Aldatz F, Burgos-Jaramillo M, Barragán-Campos HM. Hippocampal volumetry as a biomarker for dementia in people with low education. Dement Geriatr Cogn Dis Extra. 2016;6(3):486–99.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Frisoni GB, Jack CR. Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use. Alzheimers Dement. 2011;7(2):171–4.

    Article  PubMed  Google Scholar 

  24. Boccardi M, Bocchetta M, Ganzola R, Robitaille N, Redolfi A, Duchesne S, Jack CR Jr, Frisoni GB, EADC-ADNI Working Group on The Harmonized Protocol for Manual Hippocampal Segmentation and for the Alzheimer’s Disease Neuroimaging Initiative. Operationalizing protocol differences for EADC-ADNI manual hippocampal segmentation. Alzheimers Dement. 2015;11(2):184–94.

    Article  PubMed  Google Scholar 

  25. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage. 2000;11(6):805–21.

    Article  CAS  PubMed  Google Scholar 

  26. Bozzali M, Filippi M, Magnani G, Cercignani M, Franceschi M, Schiatti E, Castiglioni S, Mossini R, Falautano M, Scotti G, Comi G, Falini A. The contribution of voxel-based morphometry in staging patients with mild cognitive impairment. Neurology. 2006;67(3):453–60.

    Article  CAS  PubMed  Google Scholar 

  27. Serra L, Cercignani M, Lenzi D, Perri R, Fadda L, Caltagirone C, Macaluso E, Bozzali M. Grey and white matter changes at different stages of Alzheimer’s disease. J Alzheimers Dis. 2010;19(1):147–59.

    Article  PubMed  Google Scholar 

  28. Serra L, Fadda L, Perri R, Spanò B, Marra C, Castelli D, Torso M, Makovac E, Cercignani M, Caltagirone C, Bozzali M. Constructional apraxia as a distinctive cognitive and structural brain feature of pre-senile Alzheimer’s disease. J Alzheimers Dis. 2014;38(2):391–402.

    PubMed  Google Scholar 

  29. Serra L, Perri R, Cercignani M, Spanò B, Fadda L, Marra C, Carlesimo GA, Caltagirone C, Bozzali M. Are the behavioral symptoms of Alzheimer’s disease directly associated with neurodegeneration? J Alzheimers Dis. 2010;21(2):627–39.

    Article  PubMed  Google Scholar 

  30. Serra L, Giulietti G, Cercignani M, Spanò B, Torso M, Castelli D, Perri R, Fadda L, Marra C, Caltagirone C, Bozzali M. Mild cognitive impairment: same identity for different entities. J Alzheimers Dis. 2013;33(4):1157–65.

    PubMed  Google Scholar 

  31. Serra L, Cercignani M, Petrosini L, Basile B, Perri R, Fadda L, Spanò B, Marra C, Giubilei F, Carlesimo GA, Caltagirone C, Bozzali M. Neuroanatomical correlates of cognitive reserve in Alzheimer disease. Rejuvenation Res. 2011;14(2):143–51.

    Article  PubMed  Google Scholar 

  32. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed. 2002;15(7–8):456–67.

    Article  PubMed  Google Scholar 

  33. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–505.

    Article  PubMed  Google Scholar 

  34. Jones DK. Studying connections in the living human brain with diffusion MRI. Cortex. 2008;44(8):936–52.

    Article  PubMed  Google Scholar 

  35. Liu Y, Spulber G, Lehtimäki KK, Könönen M, Hallikainen I, Gröhn H, Kivipelto M, Hallikainen M, Vanninen R, Soininen H. Diffusion tensor imaging and tract-based spatial statistics in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2011;32(9):1558–71.

    Article  PubMed  Google Scholar 

  36. Serra L, Cercignani M, Basile B, Spanò B, Perri R, Fadda L, Marra C, Giubilei F, Caltagirone C, Bozzali M. White matter damage along the uncinate fasciculus contributes to cognitive decline in AD and DLB. Curr Alzheimer Res. 2012;9(3):326–33.

    Article  CAS  PubMed  Google Scholar 

  37. Bozzali M, Giulietti G, Basile B, Serra L, Spanò B, Perri R, Giubilei F, Marra C, Caltagirone C, Cercignani M. Damage to the cingulum contributes to Alzheimer’s disease pathophysiology by deafferentation mechanism. Hum Brain Mapp. 2012;33(6):1295–308.

    Article  PubMed  Google Scholar 

  38. Bozzali M, Parker GJ, Serra L, Embleton K, Gili T, Perri R, Caltagirone C, Cercignani M. Anatomical connectivity mapping: a new tool to assess brain disconnection in Alzheimer’s disease. Neuroimage. 2011;54(3):2045–51.

    Article  PubMed  Google Scholar 

  39. Bozzali M, Parker GJ, Spanò B, Serra L, Giulietti G, Perri R, Magnani G, Marra C, G Vita M, Caltagirone C, Cercignani M. Brain tissue modifications induced by cholinergic therapy in Alzheimer’s disease. Hum Brain Mapp. 2013;34(12):3158–67.

    Article  PubMed  Google Scholar 

  40. Peters F, Collette F, Degueldre C, Sterpenich V, Majerus S, Salmon E. The neural correlates of verbal short-term memory in Alzheimer’s disease: an fMRI study. Brain. 2009;132(7):1833–46.

    Article  PubMed  Google Scholar 

  41. Golby A, Silverberg G, Race E, Gabrieli S, O’Shea J, Knierim K, Stebbins G, Gabrieli J. Memory encoding in Alzheimer’s disease: an fMRI study of explicit and implicit memory. Brain. 2005;128(4):773–87.

    Article  PubMed  Google Scholar 

  42. Pihlajamäki M, Jauhiainen AM, Soininen H. Structural and functional MRI in mild cognitive impairment. Curr Alzheimer Res. 2009;6(2):179–85.

    Article  PubMed  Google Scholar 

  43. Lenzi D, Serra L, Perri R, Pantano P, Lenzi GL, Paulesu E, Caltagirone C, Bozzali M, Macaluso E. Single domain amnestic MCI: a multiple cognitive domains fMRI investigation. Neurobiol Aging. 2011;32(9):1542–57.

    Article  CAS  PubMed  Google Scholar 

  44. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–8.

    Article  CAS  PubMed  Google Scholar 

  45. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex. 2009;19(1):72–8.

    Article  PubMed  Google Scholar 

  46. Lee ES, Yoo K, Lee YB, Chung J, Lim JE, Yoon B, Jeong Y, Alzheimer’s Disease Neuroimaging Initiative. Default mode network functional connectivity in early and late mild cognitive impairment: results from the Alzheimer’s disease neuroimaging initiative. Alzheimer Dis Assoc Disord. 2016;30(4):289–96.

    Article  PubMed  Google Scholar 

  47. Bozzali M, Dowling C, Serra L, Spanò B, Torso M, Marra C, Castelli D, Dowell NG, Koch G, Caltagirone C, Cercignani M. The impact of cognitive reserve on brain functional connectivity in Alzheimer’s disease. J Alzheimers Dis. 2015;44(1):243–50.

    PubMed  Google Scholar 

  48. Serra L, Mancini M, Cercignani M, Di Domenico C, Spanò B, Giulietti G, Koch G, Marra C, Bozzali M. Network-based substrate of cognitive Reserve in Alzheimer’s disease. J Alzheimers Dis. 2017;55(1):421–30.

    Article  CAS  PubMed  Google Scholar 

  49. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41(4):661–81.

    CAS  PubMed  Google Scholar 

  50. Bohnen NI, Djang DS, Herholz K, Anzai Y, Minoshima S. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med. 2012;53(1):59–71.

    Article  CAS  PubMed  Google Scholar 

  51. Kato T, Inui Y, Nakamura A, Ito K. Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev. 2016;30:73–84.

    Article  PubMed  Google Scholar 

  52. Knopman DS. Diagnostic tests for Alzheimer disease: FDG-PET imaging is a player in search of a role. Neurol Clin Pract. 2012;2(2):151–3.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Scherfler C, Schwarz J, Antonini A, Grosset D, Valldeoriola F, Marek K, Oertel W, Tolosa E, Lees AJ, Poewe W. Role of DAT-SPECT in the diagnostic work up of parkinsonism. Mov Disord. 2007;22(9):1229–38.

    Article  PubMed  Google Scholar 

  54. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.

    Article  CAS  PubMed  Google Scholar 

  55. Rowe CC, Villemagne VL. Amyloid imaging with PET in early Alzheimer disease diagnosis. Med Clin North Am. 2013;97(3):377–98.

    Article  PubMed  Google Scholar 

  56. Visser PJ, Vos S, van Rossum I, Scheltens P. Comparison of International Working Group criteria and National Institute on Aging-Alzheimer’s Association criteria for Alzheimer’s disease. Alzheimers Dement. 2012;8(6):560–3.

    Article  PubMed  Google Scholar 

  57. Villemagne VL, Rowe CC, Macfarlane S, Novakovic KE, Masters CL. Imaginem oblivionis: the prospects of neuroimaging for early detection of Alzheimer’s disease. J Clin Neurosci. 2005;12(3):221–30.

    Article  PubMed  Google Scholar 

  58. Cohen AD, Rabinovici GD, Mathis CA, Jagust WJ, Klunk WE, Ikonomovic MD. Using Pittsburgh Compound B for in vivo PET imaging of fibrillar amyloid-beta. Adv Pharmacol. 2012;64:27–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, Lopresti BJ, Ziolko S, Bi W, Paljug WR, Debnath ML, Hope CE, Isanski BA, Hamilton RL, DeKosky ST. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain. 2008;131(6):1630–45.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rabinovici GD, Miller BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs. 2010;24(5):375–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Whitwell JL, Josephs KA, Avula R, Tosakulwong N, Weigand SD, Senjem ML, Vemuri P, Jones DT, Gunter JL, Baker M, Wszolek ZK, Knopman DS, Rademakers R, Petersen RC, Boeve BF, Jack CR Jr. Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. Neurology. 2011;77(9):866–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M, Mann DM, Dickson DW. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 2011;122(2):137–53.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Whitwell JL, Josephs KA. Neuroimaging in frontotemporal lobar degeneration—predicting molecular pathology. Nat Rev Neurol. 2012;8(3):131–42.

    Article  CAS  PubMed  Google Scholar 

  64. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–3.

    Article  CAS  PubMed  Google Scholar 

  65. Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain. 2009;132(11):2922–31.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393(6686):702–5.

    Article  CAS  PubMed  Google Scholar 

  67. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B, Martin JJ, van Duijn C, Peeters K, Sciot R, Santens P, De Pooter T, Mattheijssens M, Van den Broeck M, Cuijt I, Vennekens K, De Deyn PP, Kumar-Singh S, Van Broeckhoven C. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;442(7105):920–4.

    Article  CAS  PubMed  Google Scholar 

  68. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Hölttä-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chiò A, Restagno G, Borghero G, Sabatelli M, ITALSGEN Consortium, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pick A. Ubeer die Beziehungen der senile Hirnatrophie zur aphasie. Prager Medizinische Wochenschr. 1892;17:165–7.

    Google Scholar 

  70. Mesulam MM. Slowly progressive aphasia without generalized dementia. Ann Neurol. 1982;11(6):592–8.

    Article  CAS  PubMed  Google Scholar 

  71. Mesulam MM, Weintraub S. Spectrum of primary progressive aphasia. Baillieres Clin Neurol. 1992;1(3):583–609.

    CAS  PubMed  Google Scholar 

  72. Warrington EK. The selective impairment of semantic memory. Q J Exp Psychol. 1975;27(4):635–57.

    Article  CAS  PubMed  Google Scholar 

  73. Snowden JS, Goulding PJ, Neary D. Semantic dementia: a form of circumscribed cerebral atrophy. Behav Neurol. 1989;2:167–82.

    Google Scholar 

  74. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenberghe R, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Dopper EG, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley WW, Rankin KP, Johnson JK, Gorno-Tempini ML, Rosen H, Prioleau-Latham CE, Lee A, Kipps CM, Lillo P, Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, Mesulam M, Weintraub S, Dickerson BC, Diehl-Schmid J, Pasquier F, Deramecourt V, Lebert F, Pijnenburg Y, Chow TW, Manes F, Grafman J, Cappa SF, Freedman M, Grossman M, Miller BL. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(9):2456–77.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rohrer JD, Paviour D, Bronstein AM, O’Sullivan SS, Lees A, Warren JD. Progressive supranuclear palsy syndrome presenting as progressive nonfluent aphasia: a neuropsychological and neuroimaging analysis. Mov Disord. 2010;25(2):179–88.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ, Johnson JK, Weiner MW, Miller BL. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55(3):335–46.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62(1):42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang Y, Tartaglia MC, Schuff N, Chiang GC, Ching C, Rosen HJ, Gorno-Tempini ML, Miller BL, Weiner MW. MRI signatures of brain macrostructural atrophy and microstructural degradation in frontotemporal lobar degeneration subtypes. J Alzheimers Dis. 2013;33(2):431–44.

    PubMed  Google Scholar 

  80. Rohrer JD. Structural brain imaging in frontotemporal dementia. Biochim Biophys Acta. 2012;1822(3):325–32.

    Article  CAS  PubMed  Google Scholar 

  81. Hodges JR, Patterson K. Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol. 2007;6(11):1004–14.

    Article  CAS  PubMed  Google Scholar 

  82. Leyton CE, Hodges JR, Piguet O, Ballard KJ. Common and divergent neural correlates of anomia in amnestic and logopenic presentations of Alzheimer’s disease. Cortex Hodges. 2017;86:45–54.

    Article  Google Scholar 

  83. Schroeter ML, Raczka K, Neumann J, von Cramon DY. Neural networks in frontotemporal dementia—a meta-analysis. Neurobiol Aging. 2008;29(3):418–26.

    Article  PubMed  Google Scholar 

  84. Whitwell JL, Przybelski SA, Weigand SD, Ivnik RJ, Vemuri P, Gunter JL, Senjem ML, Shiung MM, Boeve BF, Knopman DS, Parisi JE, Dickson DW, Petersen RC, Jack CR Jr, Josephs KA. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain. 2009;132(Pt 11):2932–46.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Spina S, Schonhaut DR, Boeve BF, Seeley WW, Ossenkoppele R, O’Neil JP, Lazaris A, Rosen HJ, Boxer AL, Perry DC, Miller BL, Dickson DW, Parisi JE, Jagust WJ, Murray ME, Rabinovici GD. Frontotemporal dementia with the V337M MAPT mutation: tau-PET and pathology correlations. Neurology. 2017;88(8):758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosen HJ, Allison SC, Schauer GF, Gomo-Tempini ML, Weiner MW, Miller BL. Neuroanatomical correlates of behavioural disorders in dementia. Brain. 2005;128:2612–25.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, Kramer JH, Weiner M, Miller BL, Seeley WW. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain. 2010;133(5):1352–67.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Day GS, Farb NA, Tang-Wai DF, Masellis M, Black SE, Freedman M, Pollock BG, Chow TW. Salience network resting-state activity: prediction of frontotemporal dementia progression. JAMA Neurol. 2013;70(10):1249–53.

    PubMed  Google Scholar 

  89. Rytty R, Nikkinen J, Paavola L, Abou Elseoud A, Moilanen V, Visuri A, Tervonen O, Renton AE, Traynor BJ, Kiviniemi V, Remes AM. GroupICA dual regression analysis of resting state networks in a behavioral variant of frontotemporal dementia. Front Hum Neurosci. 2013;7:461.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ranasinghe KG, Rankin KP, Pressman PS, Perry DC, Lobach IV, Seeley WW, Coppola G, Karydas AM, Grinberg LT, Shany-Ur T, Lee SE, Rabinovici GD, Rosen HJ, Gorno-Tempini ML, Boxer AL, Miller ZA, Chiong W, DeMay M, Kramer JH, Possin KL, Sturm VE, Bettcher BM, Neylan M, Zackey DD, Nguyen LA, Ketelle R, Block N, Wu TQ, Dallich A, Russek N, Caplan A, Geschwind DH, Vossel KA, Miller BL. Distinct subtypes of behavioral variant frontotemporal dementia based on patterns of network degeneration. JAMA Neurol. 2016;73(9):1078–88.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Agosta F, Sala S, Valsasina P, Meani A, Canu E, Magnani G, Cappa SF, Scola E, Quatto P, Horsfield MA, Falini A, Comi G, Filippi M. Brain network connectivity assessed using graph theory in frontotemporal dementia. Neurology. 2013;81(2):134–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bozzali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bozzali, M., Serra, L. (2018). Biomarkers for Alzheimer’s Disease and Frontotemporal Lobar Degeneration: Imaging. In: Galimberti, D., Scarpini, E. (eds) Neurodegenerative Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-72938-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72938-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72937-4

  • Online ISBN: 978-3-319-72938-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics