Skip to main content

Hybrid Global/Local Derivative-Free Multi-objective Optimization via Deterministic Particle Swarm with Local Linesearch

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10710))

Abstract

A multi-objective deterministic hybrid algorithm (MODHA) is introduced for efficient simulation-based design optimization. The global exploration capability of multi-objective deterministic particle swarm optimization (MODPSO) is combined with the local search accuracy of a derivative-free multi-objective (DFMO) linesearch method. Six MODHA formulations are discussed, based on two MODPSO formulations and three DFMO activation criteria. Forty five analytical test problems are solved, with two/three objectives and one to twelve variables. The performance is evaluated by two multi-objective metrics. The most promising formulations are finally applied to the hull-form optimization of a high-speed catamaran in realistic ocean conditions and compared to MODPSO and DFMO, showing promising results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Qian, C., Yu, Y., Zhou, Z.H.: Pareto ensemble pruning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp. 2935–2941. AAAI Press (2015)

    Google Scholar 

  2. Qian, C., Tang, K., Zhou, Z.-H.: Selection hyper-heuristics can provably be helpful in evolutionary multi-objective optimization. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 835–846. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_78

    Chapter  Google Scholar 

  3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  4. Serani, A., Leotardi, C., Iemma, U., Campana, E.F., Fasano, G., Diez, M.: Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems. Appl. Soft Comput. 49, 313–334 (2016)

    Article  Google Scholar 

  5. Serani, A., Diez, M., Campana, E.F., Fasano, G., Peri, D., Iemma, U.: Globally convergent hybridization of particle swarm optimization using line search-based derivative-free techniques. In: Yang, X.S. (ed.) Recent Advances in Swarm Intelligence and Evolutionary Computation. SCI, vol. 585, pp. 25–47. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13826-8_2

    Chapter  Google Scholar 

  6. Serani, A., Fasano, G., Liuzzi, G., Lucidi, S., Iemma, U., Campana, E.F., Stern, F., Diez, M.: Ship hydrodynamic optimization by local hybridization of deterministic derivative-free global algorithms. Appl. Ocean Res. 59, 115–128 (2016)

    Article  Google Scholar 

  7. Liu, D., Tan, K.C., Goh, C.K., Ho, W.K.: A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(1), 42–50 (2007)

    Article  Google Scholar 

  8. Kaveh, A., Laknejadi, K.: A novel hybrid charge system search and particle swarm optimization method for multi-objective optimization. Expert Syst. Appl. 38(12), 15475–15488 (2011)

    Article  Google Scholar 

  9. Cheng, S., Zhan, H., Shu, Z.: An innovative hybrid multi-objective particle swarm optimization with or without constraints handling. Appl. Soft Comput. 47, 370–388 (2016)

    Article  Google Scholar 

  10. Santana-Quintero, L.V., Ramírez, N., Coello, C.C.: A multi-objective particle swarm optimizer hybridized with scatter search. In: Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI 2006. LNCS (LNAI), vol. 4293, pp. 294–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11925231_28

    Chapter  Google Scholar 

  11. Izui, K., Nishiwaki, S., Yoshimura, M., Nakamura, M., Renaud, J.E.: Enhanced multiobjective particle swarm optimization in combination with adaptive weighted gradient-based searching. Eng. Optim. 40(9), 789–804 (2008)

    Article  MathSciNet  Google Scholar 

  12. Mousa, A., El-Shorbagy, M., Abd-El-Wahed, W.: Local search based hybrid particle swarm optimization algorithm for multiobjective optimization. Swarm Evol. Comput. 3, 1–14 (2012)

    Article  Google Scholar 

  13. Xu, G., Yang, Y.Q., Liu, B.B., Xu, Y.H., Wu, A.J.: An efficient hybrid multi-objective particle swarm optimization with a multi-objective dichotomy line search. J. Comput. Appl. Math. 280, 310–326 (2015)

    Article  MathSciNet  Google Scholar 

  14. Pellegrini, R., Serani, A., Leotardi, C., Iemma, U., Campana, E.F., Diez, M.: Formulation and parameter selection of multi-objective deterministic particle swarm for simulation-based optimization. Appl. Soft Comput. 58, 714–731 (2017)

    Article  Google Scholar 

  15. Liuzzi, G., Lucidi, S., Rinaldi, F.: A derivative-free approach to constrained multiobjective nonsmooth optimization. SIAM J. Optim. 26(4), 2744–2774 (2016)

    Article  MathSciNet  Google Scholar 

  16. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056872

    Chapter  Google Scholar 

  17. Diez, M., Campana, E.F., Stern, F.: Development and evaluation of hull-form stochastic optimization methods for resistance and operability. In: Proceedings of the 13th International Conference on Fast Sea Transportation (FAST 2015) (2015)

    Google Scholar 

  18. Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing-a metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-criteria Decis. Anal. 7(1), 34–47 (1998)

    Article  Google Scholar 

  19. Jiang, S., Ong, Y.S., Zhang, J., Feng, L.: Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12), 2391–2404 (2014)

    Article  Google Scholar 

  20. Campana, E.F., Diez, M., Iemma, U., Liuzzi, G., Lucidi, S., Rinaldi, F., Serani, A.: Derivative-free global ship design optimization using global/local hybridization of the DIRECT algorithm. Optim. Eng. 17(1), 127–156 (2015)

    Article  MathSciNet  Google Scholar 

  21. Pinto, A., Peri, D., Campana, E.F.: Multiobjective optimization of a containership using deterministic particle swarm optimization. J. Ship Res. 51(3), 217–228 (2007)

    Google Scholar 

  22. Wong, T., Luk, W., Heng, P.: Sampling with Hammersley and Halton points. J. Graphics Tools 2(2), 9–24 (1997)

    Article  Google Scholar 

  23. Clerc, M.: Stagnation analysis in particle swarm optimization or what happens when nothing happens (2006). http://clerc.maurice.free.fr/pso

  24. Fonseca, C.M., Paquete, L., Lòpez-Ibàñez, M.: An improved dimension - sweep algorithm for the hypervolume indicator. In: Proceedings of the Congress on Evolutionary Computation (CEC 2006), pp. 1157–1163. IEEE (2006)

    Google Scholar 

  25. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transa. Evol. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  26. Volpi, S., Diez, M., Gaul, N., Song, H., Iemma, U., Choi, K.K., Campana, E.F., Stern, F.: Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification. Struct. Multidisciplinary Optim. 51(2), 347–368 (2015)

    Article  Google Scholar 

  27. Raquel, C.R., Naval Jr., P.C.: An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 257–264. ACM (2005)

    Google Scholar 

  28. Žilinskas, A.: Visualization of a statistical approximation of the pareto front. Appl. Math. Comput. 271, 694–700 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by the US Office of Naval Research Global, NICOP grant N62909-15-1-2016, under the administration of Dr. Woei-Min Lin, Dr. Salahuddin Ahmed, and Dr. Ki-Han Kim, and by the Italian Flagship Project RITMARE, founded by the Italian Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Diez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pellegrini, R. et al. (2018). Hybrid Global/Local Derivative-Free Multi-objective Optimization via Deterministic Particle Swarm with Local Linesearch. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R. (eds) Machine Learning, Optimization, and Big Data. MOD 2017. Lecture Notes in Computer Science(), vol 10710. Springer, Cham. https://doi.org/10.1007/978-3-319-72926-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72926-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72925-1

  • Online ISBN: 978-3-319-72926-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics