Skip to main content

Introduction

  • Chapter
  • First Online:
  • 372 Accesses

Abstract

In this chapter, we present a short review of the literature and a brief introduction to resistivity sounding methods and electrical resistivity tomography (ERT). We recall the very origin of that method and the most influential research in this field. Several advantages of the method and its relations with mathematical modeling, the boundary element method (BEM), and the theory of inverse problems are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • L.M. Alpine, Istochniki polya v teorii electricheskoirazvedki. Prikladnaya Geophizika 3, 56–200 (1947)

    Google Scholar 

  • R.D. Barker, The offset system of electrical resistivity sounding and its use with a multicore cable. Geophys. Prospect. 29(1), 128–143 (1981)

    Article  Google Scholar 

  • R.D. Barker, A simple algorithm for electrical imaging of the subsurface. First Break 10(2), 53–62 (1992)

    Google Scholar 

  • A.A. Bobachyev, Resheniye pryamykh i obratnykh zadach elektrorazvedki metodom soprotivleniy dlya slozhno-postroyennykh sred, Dissertation, Moscow, MSU, 95 p, 2003

    Google Scholar 

  • A.A. Bobachyev, Programmnoye obespecheniye dlya odnomernoy interpretatsii krivykh VEZ, VEZ-VP i MTZ, in Voprosy teorii i praktiki geologichekoy geologicheskoy interpretatsii gravitatsionnykh, magnitnykh i elektricheskikh poley, Part 1: Proceedings of the 29th session of the International Seminar, 28 Jan–2 Feb 2002 (UGGA, Yekaterinburg, 2002)

    Google Scholar 

  • A.A. Bobachyev, М.N. Marchenko, I.N. Modin, E.V. Pervago, A.V. Urusova, V.A. Shevnin, Novye podkhody k elektricheskim zondirovaniyam gorizontal’no-neodnorodnykh sred. Physika Zemli 12, 79–90 (1995)

    Google Scholar 

  • A.A. Bobachyev, I.N. Modin, E.V. Pervago, V.A. Shevnin, Mnogoelektrodnyye elektricheskiye zondirovaniya v usloviyakh gorizontal'no-neodnorodnykh sred (Review), in Razvedochnaya geofizika, vol. 2 (JCS ‘Geoinformmark’, Мoscow, 1996)

    Google Scholar 

  • A.A. Bobachyev, A.A. Gorbunov, I.N. Modin, V.A. Shevnin, Elektrotomografiya metodom soprotivleniy i vyzvannoy polyarizatsii. Pribory i systemy razvedochnoi geophisiki 2, 14–17 (2006)

    Google Scholar 

  • L.S. Chanturishvili, Electro Investigation for the Design of Roads in Rough Terrain (Avtotransizdat, Moscow, 1959)

    Google Scholar 

  • L.S. Chanturishvili, Spetsial’nyye Zadachi Elektrorazvedki Pri Proyektirovanii Dorog (Transport, Moscow, 1983)

    Google Scholar 

  • J.H. Coggon, Electromagnetic and electrical modeling by the finite element method. Geophysics 36, 132–155 (1971)

    Article  Google Scholar 

  • T. Dahlin, On the automation of 2D resistivity surveying for engineering and environmental applications, PhD thesis, Lund University, 1993

    Google Scholar 

  • T. Dahlin, 2D resistivity surveying for environmental and engineering applications. First Break 14, 275–283 (1996)

    Article  Google Scholar 

  • T. Dahlin, The development of DC resistivity imaging techniques. Comput. Geosci. 27, 1019–1029 (2001)

    Article  Google Scholar 

  • T. Dahlin, B. Zhou, A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect. 52, 379–398 (2004)

    Article  Google Scholar 

  • T. Dahlin, R. Wisen, D. Zhang, 3D Effects on 2D resistivity imaging modelling and field surveying results. In 13th European Meeting of Environmental and Engineering Geophysics, Session: Electrical and Electromagnetic Methods, vol. 1 (2007)

    Google Scholar 

  • I. Demirci, E. Erdogan, M.E. Candasayar, Two-dimensional inversion of direct current resistivity data incorporating topography by using finite difference techniques with triangle cells: investigation of Kera fault zone in western Crete. Geophysics 77(1), 67–75 (2012)

    Article  Google Scholar 

  • A. Dey, H.F. Morrison, Resistivity modeling for arbitrary shaped two-dimensional structures. Geophys. Prospect. 27, 106–136 (1979)

    Article  Google Scholar 

  • L.S. Edwards, A modified pseudosection for resistivity and IP. Geophysics 42, 1020–1036 (1977)

    Article  Google Scholar 

  • R.G. Ellis, D.W. Oldenburg, The pole-pole 3-D DC-resistivity inverse problem: a conjugate- gradient approach. Geophys. J. Int. 119, 187–194 (1994)

    Article  Google Scholar 

  • E. Erdogan, I. Demirci, M.E. Candasayar, Incorporating topography into 2D resistivity modeling using finite-element and finite-difference approaches. Geophysics 73(3), 135–142 (2008)

    Article  Google Scholar 

  • R.C. Fox, G.W. Hohmann, T.J. Killpack, L. Rijo, Topographic effects in resistivity and induced-polarization surveys. Geophysics 45, 75–93 (1980)

    Article  Google Scholar 

  • D.H. Griffits, J. Turnbill, A multi-electrode array for resistivity surveying. First Break 3(7), 16–20 (1985)

    Google Scholar 

  • Т. Gunther, C. Rucker, Boundless electrical resistivity tomography: BERT 2—the user tutorial, Ver. 2.0. (Geophysical Inversion and Modelling Library, https://www.pygimli.org/, 2013)

    Google Scholar 

  • Т. Gunther, C. Rucker, K. Spitzer, Three-dimensional modelling and inversion of dc resistivity data incorporating topography—I. Modelling. Geophys. J. Int. 166, 495–505 (2006)

    Article  Google Scholar 

  • G.W. Hohmann, Three-dimensional induced polarization and electromagnetic modeling. Geophysics 40, 309–324 (1975)

    Article  Google Scholar 

  • H.T. Holcombe, G.R. Jiracek, Three-dimensional terrain corrections in resistivity surveys. Geophysics 49, 439–452 (1984)

    Article  Google Scholar 

  • J.R. Inman, J. Ryu, S.H. Ward, Resistivity inversion. Geophysics 38(6), 1088–1108 (1973)

    Article  Google Scholar 

  • V.K. Khmelevskii, V.A. Shevnin, Geophyzicheskie Metody Issledoavnia (Nedra, Moscow, 1988), 296 p

    Google Scholar 

  • O. Koefoed, Geosounding Principles: Resistivity Sounding Measurements (Elsevier, Amsterdam, 1979)

    Google Scholar 

  • D.J. LaBrecque, M. Miletto, W. Daily, A. Ramirez, E. Owen, The effect of noise on Occam’s inversion of resistivity tomography data. Geophysics 61(2), 538–548 (1996)

    Article  Google Scholar 

  • R.E. Langer, An inverse problem in differential equations. Am. Math. Soc. Bull. 39, 814–820 (1933)

    Article  Google Scholar 

  • H. Lehrnann, Potential representation by independent configurations on a multielectrode array. Geophys. J. Int. 120, 331–338 (1995)

    Article  Google Scholar 

  • V. Lesur, M. Cuer, A. Straub, 2-D and 3-D interpretation of electrical tomography measurements, part 2: the inverse problem. Geophysics 64(2), 396–402 (1999)

    Article  Google Scholar 

  • M.H. Loke, in Topographic modeling in electrical imaging inversion: 62nd conference and technical exhibition, EAGE, Extended Abstracts, D-2 (2000)

    Google Scholar 

  • M.H. Loke, R.D. Barker, Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys. Prospect. 44, 131–152 (1996)

    Article  Google Scholar 

  • M.H. Loke, T. Dahlin, A combined Gauss-Newton and quasi-Newton inversion method for the interpretation of apparent resistivity pseudosections, Paper presented at the 3rd Meeting of the Environmental and Engineering Geophysics Society—European Section, Sept 1997 (Aarhus, Denmark, 1997)

    Google Scholar 

  • T.R. Madden, The resolving power of geoelectric measurements for delineating resistive zones within the crust. In The stincture and physical properties of the earth’s crust, ed. By J.G. Heacock, Am. Geophys. Union, Geophys. Monogr., vol. 14.955105 (1971)

    Google Scholar 

  • H. Maurer, K. Holliger, D.E. Boerner, Stochastic regularization: smoothness or similarity? Geophys. Res. Leu. 25(15), 2889–2892 (1998)

    Article  Google Scholar 

  • W. Menke, Geophysical Data Analysis: Discrete Inverse Theory (Academic, Orlando, FL, 1984)

    Google Scholar 

  • T. Mirgalikyzy, B. Mukanova, I. Modin, Method of integral equations for the problem of electrical tomography in a medium with ground surface relief. J. Appl. Math. 2015, 207021 (2015). https://doi.org/10.1155/2015/207021

    Article  Google Scholar 

  • I.N.Modin, V.A. Shevnin, V.K. Khmelevskii, A.G. Yakovlev et al. In Electricheskoye Zondirovanie Geologicheskoi Sredy. Part I (MSU, Moscow, 1988), p. 176

    Google Scholar 

  • I.R. Mufti, Finite-difference modeling for arbitrary-shaped two dimensional structures. Geophysics 41(62) (1976)

    Google Scholar 

  • B. Mukanova, T. Mirgalikyzy, D. Rakisheva, Modelling the influence of ground surface relief on electric sounding curves using the integral equations method. Math. Prob. En. 2017, 9079475 (2017). https://doi.org/10.1155/2017/9079475

  • M. Orunkhanov, B. Mukanova, The integral equations method in problems of electrical sounding, in Advances in High Performance Computing and Computational Sciences, ed. by Y.I. Shokin, N. Danaev, M. Orunkhanov, N. Shokina (Eds), vol. 93, (Springer, Berlin, 2006), pp. 15–21

    Google Scholar 

  • M.K. Orunkhanov, B.G. Mukanova, B.K. Sarbasova, Chislennaya realizacia metoda potencialov v zadache zondirovania nad naklonnym lpatom, in Computational Technologies, vol. 9, (Siberian Branch of Russian Academy of Sciences, Novosibirsk, 2004a), pp. 45–48

    Google Scholar 

  • M.K. Orunkhanov, B.G. Mukanova, B.K. Sarbasova, Chislennoe modelirovanie zadach electricheskogo zondirovania. In Computational Technologies, Special Issue, part 3, vol. 9 (Almaty-Novosibirsk, 2004b), pp. 259–263

    Google Scholar 

  • M. Orunkhanov, B. Mukanova, B. Sarbasova, Convergence of the method of integral equations for quasi three-dimensional problem of electrical sounding, in Computational Science and High Performance Computing II, ed. by E. Krause, Y. Shokin, M. Resch, N. Shokina (Eds), (Springer, Berlin, 2005), pp. 175–180

    Google Scholar 

  • S. Penz, H. Chauris, D. Donno, C. Mehl, Resistivity modeling with topography. Geophys. J. Int. 194(3), 1486–1497 (2013)

    Article  Google Scholar 

  • I.P. Skalskaya, Pole tochechnogo istochnika toka, raspolozhennogo na poverkhnosti Zemli nad naklonnym plastom. J. Tech. Phys. 18(10), 1243–1254 (1948)

    Google Scholar 

  • L.B. Slihter, The interpretation of resistivity prospecting method for horizontal structures. Physics 4, 307–322 (1933)

    Article  Google Scholar 

  • S.S. Stefanescu, C. Shlumberger, Sur la distribution electrique potencielle dans une terrain a couches horizontals, homogenes et isotropes. J. Phys. Radium 7, 132–141 (1930)

    Article  Google Scholar 

  • A.F. Stevenson, On the theoretical determination of earth resistance from surface potencial measurements. Physics 5, 114–124 (1934)

    Article  Google Scholar 

  • A. G. Tarkhov (ed.), Electrorazvedka, Sparvochnik Geophizika (Nedra, Мoscow, 1980)

    Google Scholar 

  • P.I. Tsourlos, J.E. Szymanski, G.N. Tsokas, The effect of topography on commonly used resistivity arrays. Geophysics 64(5), 1357–1363 (1999)

    Article  Google Scholar 

  • A.V. Veshev, Vliyaniye rel'yefa na rezul'taty rabot kombinirovannym elektroprofilirovaniyem, in Uchenye Zapiski LGU, vol. 278, (LSU, Leningrad, 1959)

    Google Scholar 

  • A.V. Veshev, In Electroprofilirovanie na Postoyannom I Peremennom Toke, 2nd ed. (Nedra, Leningrad, 1980). (in Russian)

    Google Scholar 

  • S.Z. Xu, The Boundary Element Method in Geophysics, Geophysical Monograph Series (Issue 9) (SEG Books, 2001)

    Google Scholar 

  • S.Z. Xu, S. Zhao, Y. Ni, A boundary element method for 2-D dc resistivity modeling with a point current source. Geophysics 63, 399–404 (1998)

    Article  Google Scholar 

  • S.A.Yerokhin, Primeneniye elektrotomografii pri resheniya rudnykh, inzhenernykh i arkheologicheskikh zadach, Dissertation, Moscow State University, Moscow, 2012

    Google Scholar 

  • S.A. Yerokhin, I.N. Modin, V.P. Novikov, A.M. Pavlova, Vozmozhnosti Elektricheskoy Tomografii Pri Izuchenii Karstovo-Suffozionnykh Voronok, in Ingenernye Izyskania, vol. 11, (Geomarketing, Moscow, 2011)

    Google Scholar 

  • A.A.R. Zohdy, A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics 54(2), 245–253 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukanova, B., Modin, I. (2018). Introduction. In: The Boundary Element Method in Geophysical Survey. Innovation and Discovery in Russian Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-72908-4_1

Download citation

Publish with us

Policies and ethics