Imaging to Evaluate Bone Health

Chapter

Abstract

Bone mineral density (BMD) measurements by dual-energy x-ray absorptiometry (DXA) are an important part of a bone health assessment, and DXA scans of the lumbar spine and whole body are recommended for adolescents. Bone mineral content (BMC) and BMD are expressed as age-, sex-, and ancestry-specific Z-scores. As a two-dimensional technique, DXA measures areal BMD (aBMD), which is influenced by bone size. Adjustments of aBMD Z-scores are needed in patients with growth delay to prevent erroneous interpretation of results. The most promising adjustment approaches include calculation of bone mineral apparent density (BMAD) and correction using height-for-age-adjusted Z-scores. In select clinical circumstances, a bone age adjustment can be helpful as well. Follow-up DXA scans to aid clinical management should be performed every 1–2 years, at most. Vertebral fractures may be evident on DXA spine scans and invalidate aBMD results. Suspicion of vertebral fracture on a DXA scan warrants radiological follow-up. A special software for vertebral fracture assessment (VFA) by DXA has recently been found to be as good as conventional radiography in identifying moderate to severe vertebral fractures in children and adolescents. Several types of quantitative computed tomography (QCT) have been used to characterize bone, but they remain research tools in pediatrics owing to lack of standardization and reference ranges.

Keywords

Bone mineral content Bone mineral density Bone mineral apparent density BMAD Bone fragility Delayed growth Dual-energy x-ray absorptiometry DXA Height-for-age Peripheral QCT Vertebral fracture 

References

  1. 1.
    Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46(2):294–305.CrossRefPubMedGoogle Scholar
  3. 3.
    Blake GM, Naeem M, Boutros M. Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone. 2006;38(6):935–42.CrossRefPubMedGoogle Scholar
  4. 4.
    Ward R, Carroll WD, Cunningham P, Ho S-A, Jones M, Lenney W, et al. Radiation dose from common radiological investigations and cumulative exposure in children with cystic fibrosis: an observational study from a single UK Centre. BMJ Open. 2017;7:e017548.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    NCRP, National Council on Radiation Protection and Measurements. Limitation of exposure to ionizing radiation. National Council on Radiation Protection and Measurements, Bethesda; 1993; NCRP report no. 116.Google Scholar
  6. 6.
    Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17(2):225–42.CrossRefPubMedGoogle Scholar
  7. 7.
    Crabtree NJ, Hogler W, Cooper MS, Shaw NJ. Diagnostic evaluation of bone densitometric size adjustment techniques in children with and without low trauma fractures. Osteoporos Int. 2013;24(7):2015–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Shepherd JA, Wang L, Fan B, Gilsanz V, Kalkwarf HJ, Lappe J, et al. Optimal monitoring time interval between DXA measures in children. J Bone Miner Res. 2011;26(11):2745–52.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kalkwarf HJ, Laor T, Bean JA. Fracture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA). Osteoporos Int. 2011;22(2):607–16.CrossRefPubMedGoogle Scholar
  10. 10.
    Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Mineral Res. 1998;13(1):143–8.CrossRefGoogle Scholar
  11. 11.
    Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139(4):509–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Wren TA, Shepherd JA, Kalkwarf HJ, Zemel BS, Lappe JM, Oberfield S, et al. Racial disparity in fracture risk between white and nonwhite children in the United States. J Pediatr. 2012;161(6):1035–40.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Harcke HT, Taylor A, Bachrach S, Miller F, Henderson RC. The lateral femoral scan: an alternative method for assessing bone mineral density in children with cerebral palsy. Pediatr Radiol. 1998;28:241–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Henderson RC, Lark RK, Newman JE, Kecskemthy H, Fung EB, Renner JB, et al. Pediatric reference data for dual x-ray absorptiometric measures of normal bone density in the distal femur. AJR Am J Roentgenol. 2002;178:439–43.CrossRefPubMedGoogle Scholar
  15. 15.
    Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, et al. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res. 2010;25(3):520–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Zemel BS, Stallings VA, Leonard MB, Paulhamus DR, Kecskemethy HH, Harcke HT, et al. Revised pediatric reference data for the lateral distal femur measured by Hologic Discovery/Delphi dual-energy X-ray absorptiometry. J Clin Densitometry. 2009;12(2):207–18.CrossRefGoogle Scholar
  17. 17.
    Mueske NM, Chan LS, Wren TAL. Reliability of lateral distal femur dual-energy x-ray absorptiometry measures. J Clin Densitometry. 2014;17(4):522–7.CrossRefGoogle Scholar
  18. 18.
    Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab. 1999;84(12):4702–12.PubMedGoogle Scholar
  19. 19.
    Nelson DA, Barondess DA. Whole body bone, fat and lean mass in children: comparison of three ethnic groups. Am J Phys Anthropol. 1997;103(2):157–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Nelson DA, Simpson PM, Johnson CC, Barondess DA, Kleerekoper M. The accumulation of whole body skeletal mass in third- and fourth-grade children: effects of age, gender, ethnicity, and body composition. Bone. 1997;20(1):73–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Crabtree NJ, Shaw NJ, Bishop NJ, Adams JE, Mughal MZ, Arundel P, et al. Amalgamated reference data for size-adjusted bone densitometry measurements in 3598 children and young adults-the ALPHABET study. J Bone Miner Res. 2017;32(1):172–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Crabtree NJ, Kibirige MS, Fordham JN, Banks LM, Muntoni F, Chinn D, et al. The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone. 2004;35(4):965–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Short DF, Gilsanz V, Kalkwarf HJ, Lappe JM, Oberfield S, Shepherd JA, et al. Anthropometric models of bone mineral content and areal bone mineral density based on the bone mineral density in childhood study. Osteoporos Int. 2015;26(3):1099–108.CrossRefPubMedGoogle Scholar
  25. 25.
    Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95(3):1265–73.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Mineral Res. 1992;7:137–45.CrossRefGoogle Scholar
  27. 27.
    Hogler W, Briody J, Woodhead HJ, Chan A, Cowell CT. Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J Pediatr. 2003;143(1):81–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Schoenau E. From mechanostat theory to development of the ‘Functional Muscle-Bone-Unit’. J Musculoskelet Neuronal Interact. 2005;5(3):232–8.PubMedGoogle Scholar
  29. 29.
    Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21(9):1489–95.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weber DR, Moore RH, Leonard MB, Zemel BS. Fat and lean BMI reference curves in children and adolescents and their utility in identifying excess adiposity compared with BMI and percentage body fat. Am J Clin Nutr. 2013;98(1):49–56.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, Hangartner TN, et al. Tracking of bone mass and density during childhood and adolescence. J Clin Endocrinol Metab. 2010;95(4):1690–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wren TA, Kalkwarf HJ, Zemel BS, Lappe JM, Oberfield S, Shepherd JA, et al. Longitudinal tracking of dual-energy X-ray absorptiometry bone measures over 6 years in children and adolescents: persistence of low bone mass to maturity. J Pediatr. 2014;164(6):1280–5.e2.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Carmargos BM, Carey JJ, et al. Best practices for dual-energy X-ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance. J Clin Densitometry. 2016;19(2):127–40.CrossRefGoogle Scholar
  34. 34.
    LeBlanc CMA, Ma J, Taljaard M, Roth J, Scuccimarri R, Meiettunen P, et al. Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders. J Bone Miner Res. 2015;30(9):1667–75.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Simm PJ, Johannesen J, Briody J, McQuade M, Hsu B, Bridge C, et al. Zoledronic acid improves bone mineral density, reduces bone turnover and improves skeletal architecture over 2 years of treatment in children with secondary osteoporosis. Bone. 2011;49(5):939–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Crabtree NJ, Chapman S, Hogler W, Hodgson K, Chapman D, Bebbington N, et al. Vertebral fractures assessment in children: evaluation of DXA imaging versus conventional spine radiography. Bone. 2017;97:168–74.CrossRefPubMedGoogle Scholar
  37. 37.
    Siminoski K, Lee K-C, Jen H, Warshawski R, Matzinger M-A, Shenouda N, et al. Anatomical distribution of vertebral fractures: comparison of pediatric and adult spines. Osteoporos Int. 2012;23(7):1999–2008.CrossRefPubMedGoogle Scholar
  38. 38.
    Genant HK, Li J, Wu CY, Shepherd JA. Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitometry. 2000;3(3):281–90.CrossRefGoogle Scholar
  39. 39.
    Schousboe JT, Shepherd JA, Bilezikian JP, Baim S. Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitometry. 2013;16(4):455–66.CrossRefGoogle Scholar
  40. 40.
    Mäyränpää MK, Helenius I, Valta H, Mäyränpää MI, Toiviainen-Salo S, Mäkitie O. Bone densitometry in the diagnosis of vertebral fractures in children: accuracy of vertebral fracture assessment. Bone. 2007;41(3):353–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Kyriakou A, Shepherd S, Mason A, Ahmed SF. A critical appraisal of vertebral fracture assessment in paediatrics. Bone. 2015;81:255–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Diacinti D, Pisani D, DA M, Celli M, Zambrano A, Stoppo M, et al. Reliability of vertebral fractures assessment (VFA) in children with osteogenesis imperfecta. Calcif Tissue Int. 2015;96(4):307–12.CrossRefPubMedGoogle Scholar
  43. 43.
    Farr JN, Amin S, Melton LJ 3rd, Kirmani S, McCready LK, Atkinson EJ, et al. Bone strength and structural deficits in children and adolescents with a distal forearm fractureresulting from mild trauma. J Bone Miner Res. 2014;29(3):590–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Määttä M, Macdonald HM, Mulpuri K, McKay HA. Deficits in distal radius bone strength, density and microstructure are associated with forearm fractures in girls: an HR-pQCT study. Osteoporosis Int. 2015;26(3):1163–74.CrossRefGoogle Scholar
  45. 45.
    Adams JE, Kengelke K, Zemel BS, Ward KA. Quantitative computer tomography in children and adolescents: the 2013 ISCD pediatric official positions. J Clin Densitometry. 2014;17(2):258–74.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Gastroenterology, Hepatology & NutritionCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations