The Bone Health History and Physical Examination in Adolescents

  • Alison M. BoyceEmail author


The adolescent skeleton is a dynamic organ that is impacted by a wide variety of biological, hormonal, and behavioral processes. The bone-focused history and physical examination (H&P) is the primary care clinician’s best tool for eliciting the complex information needed to evaluate bone health in adolescent patients. While core elements of the H&P remain consistent, a bone-focused evaluation includes specific considerations to target the factors that affect skeletal health. This chapter will provide guidance in evaluating adolescents with known or suspected bone disorders, with an emphasis on recognizing features that contribute to skeletal disease and identifying opportunities to promote bone health.


Bone density Fracture Osteoporosis Pediatrics Nutrition Exercise Puberty Amenorrhea 


  1. 1.
    Vierucci F, Saggese G, Cimaz R. Osteoporosis in childhood. Curr Opin Rheumatol. 2017;29(5):535–46.CrossRefPubMedGoogle Scholar
  2. 2.
    Krakow D, Rimoin DL. The skeletal dysplasias. Genet Med. 2010;12(6):327–41.CrossRefPubMedGoogle Scholar
  3. 3.
    Troncone R, Kosova R. Short stature and catch-up growth in celiac disease. J Pediatr Gastroenterol Nutr. 2010;51(Suppl 3):S137–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Gasparetto M, Guariso G. Crohn’s disease and growth deficiency in children and adolescents. World J Gastroenterol. 2014;20(37):13219–33.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Smith EM, Foster HE, Beresford MW. Adding to complexity: comorbidity in paediatric rheumatic disease. Rheumatology (Oxford). 2013;52(1):22–33.CrossRefGoogle Scholar
  6. 6.
    He Q, Karlberg J. Bmi in childhood and its association with height gain, timing of puberty, and final height. Pediatr Res. 2001;49(2):244–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Puntis JW. Malnutrition and growth. J Pediatr Gastroenterol Nutr. 2010;51(Suppl 3):S125–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Touwslager RN, et al. Determinants of infant growth in four age windows: a twin study. J Pediatr. 2011;158(4):566–72.e2.CrossRefPubMedGoogle Scholar
  9. 9.
    Krakow D. Skeletal dysplasias. Clin Perinatol. 2015;42(2):301–19. viii.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Roche AF, et al. Head circumference reference data: birth to 18 years. Pediatrics. 1987;79(5):706–12.PubMedGoogle Scholar
  11. 11.
    Mazicioglu MM, et al. Age references for the arm span and stature of Turkish children and adolescents. Ann Hum Biol. 2009;36(3):308–19.CrossRefPubMedGoogle Scholar
  12. 12.
    Turan S, et al. Upper segment/lower segment ratio and armspan-height difference in healthy Turkish children. Acta Paediatr. 2005;94(4):407–13.CrossRefPubMedGoogle Scholar
  13. 13.
    Cho SY, Jin DK. Guidelines for genetic skeletal dysplasias for pediatricians. Ann Pediatr Endocrinol Metab. 2015;20(4):187–91.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Smits-Engelsman B, Klerks M, Kirby A. Beighton score: a valid measure for generalized hypermobility in children. J Pediatr. 2011;158(1):119–23, 123.e1–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Theintz G, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75(4):1060–5.PubMedGoogle Scholar
  16. 16.
    Slemenda CW, et al. Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr. 1994;125(2):201–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Kasperk CH, et al. Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J Bone Miner Res. 1997;12(3):464–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Palmert MR, Dunkel L. Clinical practice. Delayed puberty. N Engl J Med. 2012;366(5):443–53.CrossRefPubMedGoogle Scholar
  19. 19.
    Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45(239):13–23.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291–303.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dimitri P, Wales JK, Bishop N. Fat and bone in children: differential effects of obesity on bone size and mass according to fracture history. J Bone Miner Res. 2010;25(3):527–36.CrossRefPubMedGoogle Scholar
  22. 22.
    Kueper J, et al. Evidence for the adverse effect of starvation on bone quality: a review of the literature. Int J Endocrinol. 2015;2015:628740.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Goulding A, et al. Children who avoid drinking cow’s milk are at increased risk for prepubertal bone fractures. J Am Diet Assoc. 2004;104(2):250–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Cheng S, et al. Effects of calcium, dairy product, and vitamin D supplementation on bone mass accrual and body composition in 10-12-y-old girls: a 2-y randomized trial. Am J Clin Nutr. 2005;82(5):1115–26; quiz 1147-8.PubMedGoogle Scholar
  25. 25.
    Huncharek M, Muscat J, Kupelnick B. Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone. 2008;43(2):312–21.CrossRefPubMedGoogle Scholar
  26. 26.
    Sonneville KR, et al. Vitamin d, calcium, and dairy intakes and stress fractures among female adolescents. Arch Pediatr Adolesc Med. 2012;166(7):595–600.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Voortman T, et al. Vitamin D deficiency in school-age children is associated with sociodemographic and lifestyle factors. J Nutr. 2015;145(4):791–8.CrossRefPubMedGoogle Scholar
  28. 28.
    van den Hooven EH, et al. Identification of a dietary pattern prospectively associated with bone mass in Australian young adults. Am J Clin Nutr. 2015;102(5):1035–43.CrossRefPubMedGoogle Scholar
  29. 29.
    Budek AZ, et al. Dietary protein intake and bone mineral content in adolescents-The Copenhagen Cohort Study. Osteoporos Int. 2007;18(12):1661–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Ambroszkiewicz J, et al. The influence of vegan diet on bone mineral density and biochemical bone turnover markers. Pediatr Endocrinol Diabetes Metab. 2010;16(3):201–4.PubMedGoogle Scholar
  31. 31.
    Becker PJ, et al. Consensus statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: indicators recommended for the identification and documentation of pediatric malnutrition (undernutrition). J Acad Nutr Diet. 2014;114(12):1988–2000.CrossRefPubMedGoogle Scholar
  32. 32.
    Lehtonen-Veromaa M, et al. A 1-year prospective study on the relationship between physical activity, markers of bone metabolism, and bone acquisition in peripubertal girls. J Clin Endocrinol Metab. 2000;85(10):3726–32.PubMedGoogle Scholar
  33. 33.
    Mitchell JA, et al. Physical activity benefits the skeleton of children genetically predisposed to lower bone density in adulthood. J Bone Miner Res. 2016;31(8):1504–12.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Herrmann D, et al. Impact of physical activity, sedentary behaviour and muscle strength on bone stiffness in 2-10-year-old children-cross-sectional results from the IDEFICS study. Int J Behav Nutr Phys Act. 2015;12:112.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vandenborne K, et al. Longitudinal study of skeletal muscle adaptations during immobilization and rehabilitation. Muscle Nerve. 1998;21(8):1006–12.CrossRefPubMedGoogle Scholar
  36. 36.
    Epstein S, et al. Disorders associated with acute rapid and severe bone loss. J Bone Miner Res. 2003;18(12):2083–94.CrossRefPubMedGoogle Scholar
  37. 37.
    Fung EB, et al. Rapid remineralization of the distal radius after forearm fracture in children. J Pediatr Orthop. 2011;31(2):138–43.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rastogi A, et al. Celiac disease: a missed cause of metabolic bone disease. Indian J Endocrinol Metab. 2012;16(5):780–5.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Thearle M, et al. Osteoporosis: an unusual presentation of childhood Crohn’s disease. J Clin Endocrinol Metab. 2000;85(6):2122–6.PubMedGoogle Scholar
  40. 40.
    Leonard MB. Glucocorticoid-induced osteoporosis in children: impact of the underlying disease. Pediatrics. 2007;119(Suppl 2):S166–74.CrossRefPubMedGoogle Scholar
  41. 41.
    Sidoroff VH, et al. Inhaled corticosteroids and bone mineral density at school age: a follow-up study after early childhood wheezing. Pediatr Pulmonol. 2015;50(1):1–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Schwartz AM, Leonidas JC. Methotrexate osteopathy. Skelet Radiol. 1984;11(1):13–6.CrossRefGoogle Scholar
  43. 43.
    Divasta AD, Laufer MR, Gordon CM. Bone density in adolescents treated with a GnRH agonist and add-back therapy for endometriosis. J Pediatr Adolesc Gynecol. 2007;20(5):293–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Scholes D, et al. Change in bone mineral density among adolescent women using and discontinuing depot medroxyprogesterone acetate contraception. Arch Pediatr Adolesc Med. 2005;159(2):139–44.CrossRefPubMedGoogle Scholar
  45. 45.
    Kaunitz AM, Arias R, McClung M. Bone density recovery after depot medroxyprogesterone acetate injectable contraception use. Contraception. 2008;77(2):67–6.Google Scholar
  46. 46.
    Arora E, Singh H, Gupta YK. Impact of antiepileptic drugs on bone health: need for monitoring, treatment, and prevention strategies. J Family Med Prim Care. 2016;5(2):248–53.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gajic-Veljanoski O, et al. Effects of long-term low-molecular-weight heparin on fractures and bone density in non-pregnant adults: a systematic review with meta-analysis. J Gen Intern Med. 2016;31(8):947–57.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lim LS, et al. Loop diuretic use and increased rates of hip bone loss in older men: the Osteoporotic Fractures in Men Study. Arch Intern Med. 2008;168(7):735–40.CrossRefPubMedGoogle Scholar
  49. 49.
    Rejnmark L, et al. Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: results from a randomized controlled study with bumetanide. J Bone Miner Res. 2006;21(1):163–70.CrossRefPubMedGoogle Scholar
  50. 50.
    Freedberg DE, Kim LS, Yang YX. The risks and benefits of long-term use of proton pump inhibitors: expert review and best practice advice from the American Gastroenterological Association. Gastroenterology. 2017;152(4):706–15.CrossRefPubMedGoogle Scholar
  51. 51.
    Estrada K, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Medina-Gomez C, et al. BMD loci contribute to ethnic and developmental differences in skeletal fragility across populations: assessment of evolutionary selection pressures. Mol Biol Evol. 2015;32(11):2961–72.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Loud KJ, et al. Family history predicts stress fracture in active female adolescents. Pediatrics. 2007;120(2):e364–72.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Reamy BV, Slakey JB. Adolescent idiopathic scoliosis: review and current concepts. Am Fam Physician. 2001;64(1):111–6.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Section on Skeletal Disorders and Mineral Homeostasis, Craniofacial and Skeletal Diseases BranchNational Institute of Dental and Craniofacial ResearchBethesdaUSA

Personalised recommendations