Advertisement

Normal Bone Physiology 101

Chapter

Abstract

Adolescence is a critical time for bone growth and development, when a significant amount of bone is deposited, contributing to peak bone mass in adulthood. There is a dynamic interplay between sex steroids, growth hormone, and mechanical loading during adolescence. At the cellular level, this involves the coordination of growth, modeling and remodeling processes by osteoblasts and osteoclasts, mechanosensing by osteocytes, and the seamless synchronization of multiple hormones such as parathyroid hormone (PTH), vitamin D, and fibroblast growth factor (FGF)-23 and cell signaling pathways such as canonical Wnt, Bone Morphogenetic Proteins (BMPs), and receptor activator of nuclear factor kappa B (RANK)/RANK ligand (RANKL).

Keywords

Collagen Osteocytes Osteoblasts Osteoclasts Hydroxyapatite Wnt RANK Osteoprotegerin Sclerostin BMP 

References

  1. 1.
    Boskey AL, Robey PG. The composition of bone. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Oxford, UK: Wiley-Blackwell; 2013. p. 49–58.CrossRefGoogle Scholar
  2. 2.
    Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S131–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Leblond CP. Synthesis and secretion of collagen by cells of connective tissue, bone, and dentin. Anat Rec. 1989;224(2):123–38.CrossRefPubMedGoogle Scholar
  4. 4.
    Lim J, et al. Genetic causes and mechanisms of Osteogenesis Imperfecta. Bone. 2017;102:40–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Ward LM, Konji VN, Ma J. The management of osteoporosis in children. Osteoporos Int. 2016;27(7):2147–79.CrossRefPubMedGoogle Scholar
  6. 6.
    Young MF, et al. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop Relat Res. 1992;281:275–94.Google Scholar
  7. 7.
    Leeming DJ, et al. An update on biomarkers of bone turnover and their utility in biomedical research and clinical practice. Eur J Clin Pharmacol. 2006;62(10):781–92.CrossRefPubMedGoogle Scholar
  8. 8.
    Mizokami A, Kawakubo-Yasukochi T, Hirata M. Osteocalcin and its endocrine functions. Biochem Pharmacol. 2017;132:1–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Dermience M, et al. Effects of thirty elements on bone metabolism. J Trace Elem Med Biol. 2015;32:86–106.CrossRefPubMedGoogle Scholar
  10. 10.
    Golub EE. Role of matrix vesicles in biomineralization. Biochim Biophys Acta. 2009;1790(12):1592–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Landis WJ. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone. 1995;16(5):533–44.CrossRefPubMedGoogle Scholar
  12. 12.
    Russell RG. Bisphosphonates: the first 40 years. Bone. 2011;49(1):2–19.CrossRefPubMedGoogle Scholar
  13. 13.
    Whyte MP. Hypophosphatasia: an overview for 2017. Bone. 2017;102:15–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Elder CJ, Bishop NJ. Rickets. Lancet. 2014;383(9929):1665–76.CrossRefPubMedGoogle Scholar
  15. 15.
    Ruppe MD, Jan de Beur SM. Chap. 74: Disorders of phosphate homeostasis. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Ames: Wiley; 2013. p. 601–12. https://doi.org/10.1002/9781118453926.CrossRefGoogle Scholar
  16. 16.
    Econs MJ. Genetic diseases resulting from disordered FGF23/klotho biology. Bone. 2017;100:56–61.CrossRefPubMedGoogle Scholar
  17. 17.
    White KE, Econs MJ. Chap. 24: Fibroblast growth factor-23 (FGF23). In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Ames: Wiley; 2013. p. 188–94. https://doi.org/10.1002/9781118453926.CrossRefGoogle Scholar
  18. 18.
    Bell TD, Demay MB, Burnett-Bowie SA. The biology and pathology of vitamin D control in bone. J Cell Biochem. 2010;111(1):7–13.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nissenson RA, Jüppner H. Parathyroid hormone. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Oxford, UK: Wiley-Blackwell; 2013. p. 208–14.CrossRefGoogle Scholar
  20. 20.
    Brown EM. Ca2+-sensing receptor. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Oxford, UK: Wiley-Blackwell; 2013. p. 224–34.CrossRefGoogle Scholar
  21. 21.
    Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10(7):1257–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9(Suppl 1):S1.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Novack DV, Mbalaviele G. Osteoclasts-key players in skeletal health and disease. Microbiol Spectr. 2016;4(3). https://doi.org/10.1128/microbiolspec.MCHD-0011-2015.Google Scholar
  24. 24.
    Bikle DD. What is new in vitamin D: 2006–2007. Curr Opin Rheumatol. 2007;19(4):383–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Bikle D, Adams J, Christakos S. Chap. 29: Vitamin D: production, metabolism, mechanism of action, and clinical requirements. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Ames: Wiley; 2013. p. 235–48. https://doi.org/10.1002/9781118453926.CrossRefGoogle Scholar
  26. 26.
    Urakawa I, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Bonewald LF, Wacker MJ. FGF23 production by osteocytes. Pediatr Nephrol. 2013;28(4):563–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Shimada T, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19(3):429–35.CrossRefPubMedGoogle Scholar
  29. 29.
    White KE, et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 2001;60(6):2079–86.CrossRefPubMedGoogle Scholar
  30. 30.
    Bonewald LF. Osteocytes. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Oxford, UK: Wiley-Blackwell; 2013. p. 34–41.CrossRefGoogle Scholar
  31. 31.
    Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92.CrossRefPubMedGoogle Scholar
  32. 32.
    Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5(1):a007898.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    de Gorter DJJ, ten Dijke P. Chap. 2: Signal transduction cascades controlling osteoblast differentiation. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Ames: Wiley; 2013. p. 15–24. https://doi.org/10.1002/>9781118453926.Google Scholar
  34. 34.
    Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–80.CrossRefPubMedGoogle Scholar
  35. 35.
    Dallas SL, Bonewald LF. Dynamics of the transition from osteoblast to osteocyte. Ann N Y Acad Sci. 2010;1192:437–43.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gong Y, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.CrossRefPubMedGoogle Scholar
  37. 37.
    Ai M, et al. Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Mol Cell Biol. 2005;25(12):4946–55.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem. 2005;280(29):26770–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Li X, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Whyte MP. Sclerosing bone disorders. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Oxford, UK: Wiley-Blackwell; 2013. p. 767–85.CrossRefGoogle Scholar
  41. 41.
    Li X, et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet. 2005;37(9):945–52.CrossRefPubMedGoogle Scholar
  42. 42.
    Pinzone JJ, et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood. 2009;113(3):517–25.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–37.PubMedGoogle Scholar
  44. 44.
    Matsuo K. Cross-talk among bone cells. Curr Opin Nephrol Hypertens. 2009;18(4):292–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Ross FP. Osteoclast biology and bone resorption. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Oxford, UK: Wiley-Blackwell; 2013. p. 25–33.CrossRefGoogle Scholar
  46. 46.
    Whyte MP, et al. Osteoprotegerin deficiency and juvenile Paget's disease. N Engl J Med. 2002;347(3):175–84.CrossRefPubMedGoogle Scholar
  47. 47.
    Whyte MP. Paget's disease of bone and genetic disorders of RANKL/OPG/RANK/NF-kappaB signaling. Ann N Y Acad Sci. 2006;1068:143–64.CrossRefPubMedGoogle Scholar
  48. 48.
    Simonet WS, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.CrossRefPubMedGoogle Scholar
  49. 49.
    Bekker PJ, et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004;19(7):1059–66.CrossRefPubMedGoogle Scholar
  50. 50.
    Yang Y. Skeletal morphogenesis and embryonic development. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Oxford, UK: Wiley-Blackwell; 2013. p. 1–14.Google Scholar
  51. 51.
    Alanay Y, Rimoin DL. Osteochondrodysplasias. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Oxford, UK: Wiley-Blackwell; 2013. p. 794–804.CrossRefGoogle Scholar
  52. 52.
    Wang Q, Seeman E. Skeletal growth and peak bone strength. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Oxford, UK: Wiley-Blackwell; 2013. p. 127–34.CrossRefGoogle Scholar
  53. 53.
    Leonard MB. Assessment of bone health in children and adolescents with cancer: promises and pitfalls of current techniques. Med Pediatr Oncol. 2003;41(3):198–207.CrossRefPubMedGoogle Scholar
  54. 54.
    Weber DR, Leonard MB, Zemel BS. Body composition analysis in the pediatric population. Pediatr Endocrinol Rev. 2012;10(1):130–9.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Bass S, et al. The differing tempo of growth in bone size, mass, and density in girls is region-specific. J Clin Invest. 1999;104(6):795–804.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wang Q, et al. Relationship of sex hormones to bone geometric properties and mineral density in early pubertal girls. J Clin Endocrinol Metab. 2004;89(4):1698–703.CrossRefPubMedGoogle Scholar
  57. 57.
    Manolagas SC, Almeida M, Jilka RL. Chap. 25: Gonadal steroids. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Ames: Wiley; 2013. p. 195–207. https://doi.org/10.1002/9781118453926.CrossRefGoogle Scholar
  58. 58.
    Almeida M, et al. Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual. J Clin Invest. 2013;123(1):394–404.CrossRefPubMedGoogle Scholar
  59. 59.
    Tomkinson A, et al. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab. 1997;82(9):3128–35.PubMedGoogle Scholar
  60. 60.
    Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359(9320):1841–50.CrossRefPubMedGoogle Scholar
  61. 61.
    Duan Y, et al. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res. 2003;18(10):1766–74.CrossRefPubMedGoogle Scholar
  62. 62.
    Guntur AR, Rosen CJ. IGF-1 regulation of key signaling pathways in bone. Bonekey Rep. 2013;2:437.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cabail MZ, et al. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state. Nat Commun. 2015;6:6406.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Haapasalo H, et al. Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. J Bone Miner Res. 1996;11(6):864–72.CrossRefPubMedGoogle Scholar
  65. 65.
    Kannus P, et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med. 1995;123(1):27–31.CrossRefPubMedGoogle Scholar
  66. 66.
    Vico L, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000;355(9215):1607–11.CrossRefPubMedGoogle Scholar
  67. 67.
    Robling AG, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75.CrossRefPubMedGoogle Scholar
  68. 68.
    Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98.CrossRefPubMedGoogle Scholar
  69. 69.
    Chen JH, et al. Boning up on Wolff's Law: mechanical regulation of the cells that make and maintain bone. J Biomech. 2010;43(1):108–18.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of EndocrinologyBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations