Skip to main content

Bone Health in Adolescents with Chronic Disease

  • Chapter
  • First Online:
A Practical Approach to Adolescent Bone Health
  • 486 Accesses

Abstract

Adolescence is a critical window for bone mass accrual during which skeletal mass is expected to double. Chronic disease in adolescence can have wide-ranging consequences for bone health, not only related to the direct effects of the underlying disorder on bone development but also to disease-related comorbidities and treatments that may exert a negative impact on bone. Common risk factors for decreased bone mineral density and fractures in adolescents with chronic disease include sex hormone deficiency, decreased physical activity, impaired linear growth, decreased lean body mass, chronic inflammation, and prolonged use of systemic glucocorticoids. The purpose of this chapter is to describe the pathophysiology, presentation, screening, and management of bone disease in common chronic conditions affecting adolescents including type 1 diabetes mellitus, celiac disease, inflammatory bowel disease, cystic fibrosis, chronic kidney disease, cancer, and hypogonadism. Emerging literature on various other childhood conditions will also be reviewed. Optimal control of bone and mineral homeostasis in adolescents with chronic diseases is essential not only for the promotion of adequate growth but also for the prevention of debilitating skeletal complications. Treatment strategies for poor bone health associated with chronic disease in adolescents include optimizing nutrition, maintaining vitamin and mineral homeostasis, encouraging weight-bearing exercise, minimizing treatment of the underlying disease with glucocorticoids or other bone-impairing medications, and treating the underlying disorder in order to prevent further bone impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sermet-Gaudelus I, Bianchi ML, Garabedian M, Aris RM, Morton A, Hardin DS, et al. European cystic fibrosis bone mineralisation guidelines. J Cyst Fibros. 2011;10(Suppl 2):S16–23.

    Article  PubMed  Google Scholar 

  2. Tangpricha V, Kelly A, Stephenson A, Maguiness K, Enders J, Robinson KA, et al. An update on the screening, diagnosis, management, and treatment of vitamin D deficiency in individuals with cystic fibrosis: evidence-based recommendations from the Cystic Fibrosis Foundation. J Clin Endocrinol Metab. 2012;97(4):1082–93.

    Article  CAS  PubMed  Google Scholar 

  3. Bianchi ML, Leonard MB, Bechtold S, Hogler W, Mughal MZ, Schonau E, et al. Bone health in children and adolescents with chronic diseases that may affect the skeleton: the 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17(2):281–94.

    Article  PubMed  Google Scholar 

  4. Zhukouskaya VV, Eller-Vainicher C, Shepelkevich AP, Dydyshko Y, Cairoli E, Chiodini I. Bone health in type 1 diabetes: focus on evaluation and treatment in clinical practice. J Endocrinol Investig. 2015;38(9):941–50.

    Article  CAS  Google Scholar 

  5. Fouda MA, Khan AA, Sultan MS, Rios LP, McAssey K, Armstrong D. Evaluation and management of skeletal health in celiac disease: position statement. Can J Gastroenterol. 2012;26(11):819–29.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Williams KM. Update on bone health in pediatric chronic disease. Endocrinol Metab Clin N Am. 2016;45(2):433–41.

    Article  Google Scholar 

  7. Compston J. Is fracture risk increased in patients with coeliac disease? Gut. 2003;52(4):459–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pappa H, Thayu M, Sylvester F, Leonard M, Zemel B, Gordon C. Skeletal health of children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2011;53(1):11–25.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kidney Disease: Improving Global Outcomes CKDMBDWG. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–130.

    Google Scholar 

  10. Group CsO. Long-term follow up guidelines for survivors of childhood, adolescent, and young adult cancers, version 4.0. Monrovia: Children’s Oncology Group; 2013.

    Google Scholar 

  11. Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729–39.

    Article  PubMed  Google Scholar 

  12. Nagata JM, Golden NH, Peebles R, Long J, Leonard MB, Chang AO, et al. Assessment of sex differences in bone deficits among adolescents with anorexia nervosa. Int J Eat Disord. 2017;50(4):352–8.

    Article  PubMed  Google Scholar 

  13. Vanderschueren D, Vandenput L, Boonen S. Reversing sex steroid deficiency and optimizing skeletal development in the adolescent with gonadal failure. Endocr Dev. 2005;8:150–65.

    Article  PubMed  Google Scholar 

  14. Misra M. Long-term skeletal effects of eating disorders with onset in adolescence. Ann N Y Acad Sci. 2008;1135:212–8.

    Article  PubMed  Google Scholar 

  15. Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.

    Article  PubMed  Google Scholar 

  16. Misra M. Bone density in the adolescent athlete. Rev Endocr Metab Disord. 2008;9(2):139–44.

    Article  PubMed  Google Scholar 

  17. Ackerman KE, Misra M. Bone health and the female athlete triad in adolescent athletes. Phys Sportsmed. 2011;39(1):131–41.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Popat VB, Calis KA, Kalantaridou SN, Vanderhoof VH, Koziol D, Troendle JF, et al. Bone mineral density in young women with primary ovarian insufficiency: results of a three-year randomized controlled trial of physiological transdermal estradiol and testosterone replacement. J Clin Endocrinol Metab. 2014;99(9):3418–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marino R, Misra M. Bone health in primary ovarian insufficiency. Semin Reprod Med. 2011;29(4):317–27.

    Article  PubMed  Google Scholar 

  20. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, et al. The IOC consensus statement: beyond the Female Athlete Triad – Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491–7.

    Article  PubMed  Google Scholar 

  21. Frisch RE. Body weight, body fat, and ovulation. Trends Endocrinol Metab. 1991;2(5):191–7.

    Article  CAS  PubMed  Google Scholar 

  22. Finkelstein JS, Klibanski A, Neer RM. A longitudinal evaluation of bone mineral density in adult men with histories of delayed puberty. J Clin Endocrinol Metab. 1996;81(3):1152–5.

    CAS  PubMed  Google Scholar 

  23. Gill MS, Hall CM, Tillmann V, Clayton PE. Constitutional delay in growth and puberty (CDGP) is associated with hypoleptinaemia. Clin Endocrinol. 1999;50(6):721–6.

    Article  CAS  Google Scholar 

  24. Cauley JA. Estrogen and bone health in men and women. Steroids. 2015;99(Pt A):11–5.

    Article  CAS  PubMed  Google Scholar 

  25. Manolagas SC, O’Brien CA, Almeida M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol. 2013;9(12):699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tam FI, Huebner A, Hofbauer LC, Rohayem J. Effects of adolescence-onset hypogonadism on metabolism, bone mineral density and quality of life in adulthood. J Pediatr Endocrinol Metab. 2015;28(9–10):1047–55.

    CAS  PubMed  Google Scholar 

  27. Golds G, Houdek D, Arnason T. Male hypogonadism and osteoporosis: the effects, clinical consequences, and treatment of testosterone deficiency in bone health. Int J Endocrinol. 2017;2017:4602129.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bayram F, Elbuken G, Korkmaz C, Aydogdu A, Karaca Z, Cakir I. The effects of gonadotropin replacement therapy on metabolic parameters and body composition in men with idiopathic hypogonadotropic hypogonadism. Horm Metab Res. 2016;48(2):112–7.

    CAS  PubMed  Google Scholar 

  29. Chamouni A, Oury F. Reciprocal interaction between bone and gonads. Arch Biochem Biophys. 2014;561:147–53.

    Article  CAS  PubMed  Google Scholar 

  30. Gordon CM, Zemel BS, Wren TA, Leonard MB, Bachrach LK, Rauch F, et al. The determinants of peak bone mass. J Pediatr. 2017;180:261–9.

    Article  PubMed  Google Scholar 

  31. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bachrach LK, Gordon CM, Section On E. Bone densitometry in children and adolescents. Pediatrics. 2016;138(4):pii: e20162398.

    Article  Google Scholar 

  33. DiVasta AD, Feldman HA, O’Donnell JM, Long J, Leonard MB, Gordon CM. Effect of exercise and antidepressants on skeletal outcomes in adolescent girls with anorexia nervosa. J Adolesc Health. 2017;60(2):229–32.

    Article  PubMed  Google Scholar 

  34. Maggio AB, Rizzoli RR, Marchand LM, Ferrari S, Beghetti M, Farpour-Lambert NJ. Physical activity increases bone mineral density in children with type 1 diabetes. Med Sci Sports Exerc. 2012;44(7):1206–11.

    Article  PubMed  Google Scholar 

  35. Grace-Farfaglia P. Bones of contention: bone mineral density recovery in celiac disease – a systematic review. Forum Nutr. 2015;7(5):3347–69.

    CAS  Google Scholar 

  36. Gabel L, Macdonald HM, Nettlefold L, McKay HA. Physical activity, sedentary time, and bone strength from childhood to early adulthood: a mixed longitudinal HR-pQCT study. J Bone Miner Res. 2017;32(7):1525–36.

    Article  CAS  PubMed  Google Scholar 

  37. Burnham JM, Shults J, Semeao E, Foster B, Zemel BS, Stallings VA, et al. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition. J Bone Miner Res. 2004;19(12):1961–8.

    Article  PubMed  Google Scholar 

  38. Kelly A, Schall JI, Stallings VA, Zemel BS. Deficits in bone mineral content in children and adolescents with cystic fibrosis are related to height deficits. J Clin Densitom. 2008;11(4):581–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sentongo TA, Semeao EJ, Piccoli DA, Stallings VA, Zemel BS. Growth, body composition, and nutritional status in children and adolescents with Crohn’s disease. J Pediatr Gastroenterol Nutr. 2000;31(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  40. Lewiecki EM, Baron R, Bilezikian JP, Gagel RE, Leonard MB, Leslie WD, et al. Proceedings of the 2015 Santa Fe bone symposium: clinical applications of scientific advances in osteoporosis and metabolic bone disease. J Clin Densitom. 2016;19(1):102–16.

    Article  PubMed  Google Scholar 

  41. Thayu M, Denson LA, Shults J, Zemel BS, Burnham JM, Baldassano RN, et al. Determinants of changes in linear growth and body composition in incident pediatric Crohn’s disease. Gastroenterology. 2010;139(2):430–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Al-Uzri A, Matheson M, Gipson DS, Mendley SR, Hooper SR, Yadin O, et al. The impact of short stature on health-related quality of life in children with chronic kidney disease. J Pediatr. 2013;163(3):736–41. e1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tonshoff B, Blum WF, Wingen AM, Mehls O. Serum insulin-like growth factors (IGFs) and IGF binding proteins 1, 2, and 3 in children with chronic renal failure: relationship to height and glomerular filtration rate. The European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. J Clin Endocrinol Metab. 1995;80(9):2684–91.

    CAS  PubMed  Google Scholar 

  44. Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95(3):1265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wasserman H, O’Donnell JM, Gordon CM. Use of dual energy X-ray absorptiometry in pediatric patients. Bone. 2017 Nov;104:84–90.

    Article  PubMed  Google Scholar 

  47. Schiessl H, Frost HM, Jee WS. Estrogen and bone-muscle strength and mass relationships. Bone. 1998;22(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  48. Tsampalieros A, Kalkwarf HJ, Wetzsteon RJ, Shults J, Zemel BS, Foster BJ, et al. Changes in bone structure and the muscle-bone unit in children with chronic kidney disease. Kidney Int. 2013;83(3):495–502.

    Article  CAS  PubMed  Google Scholar 

  49. Bechtold S, Alberer M, Arenz T, Putzker S, Filipiak-Pittroff B, Schwarz HP, et al. Reduced muscle mass and bone size in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2010;16(2):216–25.

    Article  PubMed  Google Scholar 

  50. Misra M, Golden NH, Katzman DK. State of the art systematic review of bone disease in anorexia nervosa. Int J Eat Disord. 2016;49(3):276–92.

    Article  PubMed  Google Scholar 

  51. Lopes LH, Sdepanian VL, Szejnfeld VL, de Morais MB, Fagundes-Neto U. Risk factors for low bone mineral density in children and adolescents with inflammatory bowel disease. Dig Dis Sci. 2008;53(10):2746–53.

    Article  PubMed  Google Scholar 

  52. Semeao EJ, Jawad AF, Stouffer NO, Zemel BS, Piccoli DA, Stallings VA. Risk factors for low bone mineral density in children and young adults with Crohn’s disease. J Pediatr. 1999;135(5):593–600.

    Article  CAS  PubMed  Google Scholar 

  53. Bialo SR, Gordon CM. Underweight, overweight, and pediatric bone fragility: impact and management. Curr Osteoporos Rep. 2014;12(3):319–28.

    Article  PubMed  Google Scholar 

  54. Lee DY, Wetzsteon RJ, Zemel BS, Shults J, Organ JM, Foster BJ, et al. Muscle torque relative to cross-sectional area and the functional muscle-bone unit in children and adolescents with chronic disease. J Bone Miner Res. 2015;30(3):575–83.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shmarina G, Pukhalsky A, Petrova N, Zakharova E, Avakian L, Kapranov N, et al. TNF gene polymorphisms in cystic fibrosis patients: contribution to the disease progression. J Transl Med. 2013;11:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leonard MB. Glucocorticoid-induced osteoporosis in children: impact of the underlying disease. Pediatrics. 2007;119(Suppl 2):S166–74.

    Article  PubMed  Google Scholar 

  57. Gilbert L, He X, Farmer P, Rubin J, Drissi H, van Wijnen AJ, et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem. 2002;277(4):2695–701.

    Article  CAS  PubMed  Google Scholar 

  58. Kwan Tat S, Padrines M, Theoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004;15(1):49–60.

    Article  PubMed  CAS  Google Scholar 

  59. O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145(4):1835–41.

    Article  PubMed  CAS  Google Scholar 

  60. Patschan D, Loddenkemper K, Buttgereit F. Molecular mechanisms of glucocorticoid-induced osteoporosis. Bone. 2001;29(6):498–505.

    Article  CAS  PubMed  Google Scholar 

  61. Ward LM. Osteoporosis due to glucocorticoid use in children with chronic illness. Horm Res. 2005;64(5):209–21.

    CAS  PubMed  Google Scholar 

  62. Kohrt WM, Barry DW, Schwartz RS. Muscle forces or gravity: what predominates mechanical loading on bone? Med Sci Sports Exerc. 2009;41(11):2050–5.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lewiecki EM, Lane NE. Common mistakes in the clinical use of bone mineral density testing. Nat Clin Pract Rheumatol. 2008;4(12):667–74.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, et al. Best practices for dual-energy X-ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom. 2016;19(2):127–40.

    Article  PubMed  Google Scholar 

  65. MacKenzie T, Gifford AH, Sabadosa KA, Quinton HB, Knapp EA, Goss CH, et al. Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: survival analysis of the Cystic Fibrosis Foundation patient registry. Ann Intern Med. 2014;161(4):233–41.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Foundation TCF. Cystic Fibrosis Foundation patient registry: 2015 annual data report. Cystic Fibrosis Foundation: Bethesda; 2016.

    Book  Google Scholar 

  67. Sands D, Mielus M, Umlawska W, Lipowicz A, Oralewska B, Walkowiak J. Evaluation of factors related to bone disease in Polish children and adolescents with cystic fibrosis. Adv Med Sci. 2015;60(2):315–20.

    Article  PubMed  Google Scholar 

  68. Sheikh S, Gemma S, Patel A. Factors associated with low bone mineral density in patients with cystic fibrosis. J Bone Miner Metab. 2015;33(2):180–5.

    Article  CAS  PubMed  Google Scholar 

  69. Putman MS, Baker JF, Uluer A, Herlyn K, Lapey A, Sicilian L, et al. Trends in bone mineral density in young adults with cystic fibrosis over a 15 year period. J Cyst Fibros. 2015;14(4):526–32.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Scaparrotta A, Di Pillo S, Attanasi M, Consilvio NP, Cingolani A, Rapino D, et al. Growth failure in children with cystic fibrosis. J Pediatr Endocrinol Metab. 2012;25(5–6):393–405.

    PubMed  Google Scholar 

  71. Stallings VA, Tomezsko JL, Schall JI, Mascarenhas MR, Stettler N, Scanlin TF, et al. Adolescent development and energy expenditure in females with cystic fibrosis. Clin Nutr. 2005;24(5):737–45.

    Article  PubMed  Google Scholar 

  72. Laursen EM, Molgaard C, Michaelsen KF, Koch C, Muller J. Bone mineral status in 134 patients with cystic fibrosis. Arch Dis Child. 1999;81(3):235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Simoneau T, Sawicki GS, Milliren CE, Feldman HA, Gordon CM. A randomized controlled trial of vitamin D replacement strategies in pediatric CF patients. J Cyst Fibros. 2016;15(2):234–41.

    Article  CAS  PubMed  Google Scholar 

  74. Siwamogsatham O, Alvarez JA, Tangpricha V. Diagnosis and treatment of endocrine comorbidities in patients with cystic fibrosis. Curr Opin Endocrinol Diabetes Obes. 2014;21(5):422–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aris RM, Merkel PA, Bachrach LK, Borowitz DS, Boyle MP, Elkin SL, et al. Guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab. 2005;90(3):1888–96.

    Article  CAS  PubMed  Google Scholar 

  76. Putman MS, Greenblatt LB, Sicilian L, Uluer A, Lapey A, Sawicki G, et al. Young adults with cystic fibrosis have altered trabecular microstructure by ITS-based morphological analysis. Osteoporos Int. 2016;27(8):2497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Paccou J, Zeboulon N, Combescure C, Gossec L, Cortet B. The prevalence of osteoporosis, osteopenia, and fractures among adults with cystic fibrosis: a systematic literature review with meta-analysis. Calcif Tissue Int. 2010;86(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  78. Donadio MV, Souza GC, Tiecher G, Heinzmann-Filho JP, Paim TF, Hommerding PX, et al. Bone mineral density, pulmonary function, chronological age, and age at diagnosis in children and adolescents with cystic fibrosis. J Pediatr. 2013;89(2):151–7.

    Article  Google Scholar 

  79. Cobanoglu N, Atasoy H, Ozcelik U, Yalcin E, Dogru D, Kiper N, et al. Relation of bone mineral density with clinical and laboratory parameters in pre-pubertal children with cystic fibrosis. Pediatr Pulmonol. 2009;44(7):706–12.

    Article  PubMed  Google Scholar 

  80. Mischler EH, Chesney PJ, Chesney RW, Mazess RB. Demineralization in cystic fibrosis detected by direct photon absorptiometry. Am J Dis Child. 1979;133(6):632–5.

    Article  CAS  PubMed  Google Scholar 

  81. Kelly A, Schall J, Stallings VA, Zemel BS. Trabecular and cortical bone deficits are present in children and adolescents with cystic fibrosis. Bone. 2016;90:7–14.

    Article  PubMed  Google Scholar 

  82. Henderson RC, Specter BB. Kyphosis and fractures in children and young adults with cystic fibrosis. J Pediatr. 1994;125(2):208–12.

    Article  CAS  PubMed  Google Scholar 

  83. Stephenson A, Jamal S, Dowdell T, Pearce D, Corey M, Tullis E. Prevalence of vertebral fractures in adults with cystic fibrosis and their relationship to bone mineral density. Chest. 2006;130(2):539–44.

    Article  PubMed  Google Scholar 

  84. Rossini M, Del Marco A, Dal Santo F, Gatti D, Braggion C, James G, et al. Prevalence and correlates of vertebral fractures in adults with cystic fibrosis. Bone. 2004;35(3):771–6.

    Article  CAS  PubMed  Google Scholar 

  85. Stahl M, Holfelder C, Kneppo C, Kieser M, Kasperk C, Schoenau E, et al. Multiple prevalent fractures in relation to macroscopic bone architecture in patients with cystic fibrosis. J Cyst Fibros. 2016;pii:S1569–1993(16)30547–1.

    Google Scholar 

  86. Khan TS, Fraser LA. Type 1 diabetes and osteoporosis: from molecular pathways to bone phenotype. J Osteoporos. 2015;2015:174186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Merlotti D, Gennari L, Dotta F, Lauro D, Nuti R. Mechanisms of impaired bone strength in type 1 and 2 diabetes. Nutr Metab Cardiovasc Dis. 2010;20(9):683–90.

    Article  CAS  PubMed  Google Scholar 

  88. Simmons KM, McFann K, Taki I, Liu E, Klingensmith GJ, Rewers MJ, et al. Reduced bone mineral density is associated with celiac disease autoimmunity in children with type 1 diabetes. J Pediatr. 2016;169:44–8. e1

    Article  PubMed  Google Scholar 

  89. Campos Pastor MM, Lopez-Ibarra PJ, Escobar-Jimenez F, Serrano Pardo MD, Garcia-Cervigon AG. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos Int. 2000;11(5):455–9.

    Article  CAS  PubMed  Google Scholar 

  90. Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes. 1995;44(7):775–82.

    Article  CAS  PubMed  Google Scholar 

  91. Conover CA, Lee PD, Riggs BL, Powell DR. Insulin-like growth factor-binding protein-1 expression in cultured human bone cells: regulation by insulin and glucocorticoid. Endocrinology. 1996;137(8):3295–301.

    Article  CAS  PubMed  Google Scholar 

  92. Hofbauer LC, Brueck CC, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. J Bone Miner Res. 2007;22(9):1317–28.

    Article  CAS  PubMed  Google Scholar 

  93. Ingberg CM, Palmer M, Aman J, Arvidsson B, Schvarcz E, Berne C. Body composition and bone mineral density in long-standing type 1 diabetes. J Intern Med. 2004;255(3):392–8.

    Article  PubMed  Google Scholar 

  94. Starup-Linde J, Vestergaard P. Management of endocrine disease: diabetes and osteoporosis: cause for concern? Eur J Endocrinol. 2015;173(3):R93–9.

    Article  CAS  PubMed  Google Scholar 

  95. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporos Int. 2007;18(4):427–44.

    Article  CAS  PubMed  Google Scholar 

  96. Brandao FR, Vicente EJ, Daltro CH, Sacramento M, Moreira A, Adan L. Bone metabolism is linked to disease duration and metabolic control in type 1 diabetes mellitus. Diabetes Res Clin Pract. 2007;78(3):334–9.

    Article  CAS  PubMed  Google Scholar 

  97. Bechtold S, Putzker S, Bonfig W, Fuchs O, Dirlenbach I, Schwarz HP. Bone size normalizes with age in children and adolescents with type 1 diabetes. Diabetes Care. 2007;30(8):2046–50.

    Article  PubMed  Google Scholar 

  98. Parthasarathy LS, Khadilkar VV, Chiplonkar SA, Zulf Mughal M, Khadilkar AV. Bone status of Indian children and adolescents with type 1 diabetes mellitus. Bone. 2016;82:16–20.

    Article  PubMed  Google Scholar 

  99. Saha MT, Sievanen H, Salo MK, Tulokas S, Saha HH. Bone mass and structure in adolescents with type 1 diabetes compared to healthy peers. Osteoporos Int. 2009;20(8):1401–6.

    Article  CAS  PubMed  Google Scholar 

  100. Bechtold S, Dirlenbach I, Raile K, Noelle V, Bonfig W, Schwarz HP. Early manifestation of type 1 diabetes in children is a risk factor for changed bone geometry: data using peripheral quantitative computed tomography. Pediatrics. 2006;118(3):e627–34.

    Article  PubMed  Google Scholar 

  101. Weber DR, Haynes K, Leonard MB, Willi SM, Denburg MR. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN). Diabetes Care. 2015;38(10):1913–20.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Reilly NR, Lebwohl B, Mollazadegan K, Michaelsson K, Green PH, Ludvigsson JF. Celiac disease does not influence fracture risk in young patients with type 1 diabetes. J Pediatr. 2016;169:49–54.

    Article  PubMed  Google Scholar 

  103. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  104. Thrailkill KM, Fowlkes JL. The role of vitamin D in the metabolic homeostasis of diabetic bone. Clin Rev Bone Miner Metab. 2013;11(1):28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  CAS  PubMed  Google Scholar 

  106. Bachrach LK. Diagnosis and treatment of pediatric osteoporosis. Curr Opin Endocrinol Diabetes Obes. 2014;21(6):454–60.

    Article  CAS  PubMed  Google Scholar 

  107. Barker JM, Liu E. Celiac disease: pathophysiology, clinical manifestations, and associated autoimmune conditions. Adv Pediatr Infect Dis. 2008;55:349–65.

    Google Scholar 

  108. Mustalahti K, Collin P, Sievanen H, Salmi J, Maki M. Osteopenia in patients with clinically silent coeliac disease warrants screening. Lancet. 1999;354(9180):744–5.

    Article  CAS  PubMed  Google Scholar 

  109. Caruso R, Pallone F, Stasi E, Romeo S, Monteleone G. Appropriate nutrient supplementation in celiac disease. Ann Med. 2013;45(8):522–31.

    Article  CAS  PubMed  Google Scholar 

  110. O’Malley T, Heuberger R. Vitamin D status and supplementation in pediatric gastrointestinal disease. J Spec Pediatr Nurs. 2011;16(2):140–50.

    Article  PubMed  Google Scholar 

  111. Margoni D, Chouliaras G, Duscas G, Voskaki I, Voutsas N, Papadopoulou A, et al. Bone health in children with celiac disease assessed by dual x-ray absorptiometry: effect of gluten-free diet and predictive value of serum biochemical indices. J Pediatr Gastroenterol Nutr. 2012;54(5):680–4.

    Article  CAS  PubMed  Google Scholar 

  112. Barera G, Mora S, Brambilla P, Ricotti A, Menni L, Beccio S, et al. Body composition in children with celiac disease and the effects of a gluten-free diet: a prospective case-control study. Am J Clin Nutr. 2000;72(1):71–5.

    CAS  PubMed  Google Scholar 

  113. Trovato CM, Albanese CV, Leoni S, Celletti I, Valitutti F, Cavallini C, et al. Lack of clinical predictors for low mineral density in children with celiac disease. J Pediatr Gastroenterol Nutr. 2014;59(6):799–802.

    Article  CAS  PubMed  Google Scholar 

  114. Jatla M, Zemel BS, Bierly P, Verma R. Bone mineral content deficits of the spine and whole body in children at time of diagnosis with celiac disease. J Pediatr Gastroenterol Nutr. 2009;48(2):175–80.

    Article  PubMed  Google Scholar 

  115. Jansen MA, Kiefte-de Jong JC, Gaillard R, Escher JC, Hofman A, Jaddoe VW, et al. Growth trajectories and bone mineral density in anti-tissue transglutaminase antibody-positive children: the Generation R Study. Clin Gastroenterol Hepatol. 2015;13(5):913–20. e5.

    Article  PubMed  Google Scholar 

  116. Zanchetta MB, Costa F, Longobardi V, Longarini G, Mazure RM, Moreno ML, et al. Significant bone microarchitecture impairment in premenopausal women with active celiac disease. Bone. 2015;76:149–57.

    Article  PubMed  Google Scholar 

  117. Ludvigsson JF, Michaelsson K, Ekbom A, Montgomery SM. Coeliac disease and the risk of fractures – a general population-based cohort study. Aliment Pharmacol Ther. 2007;25(3):273–85.

    Article  CAS  PubMed  Google Scholar 

  118. Bernstein CN, Wajda A, Svenson LW, MacKenzie A, Koehoorn M, Jackson M, et al. The epidemiology of inflammatory bowel disease in Canada: a population-based study. Am J Gastroenterol. 2006;101(7):1559–68.

    Article  PubMed  Google Scholar 

  119. El-Matary W, Sikora S, Spady D. Bone mineral density, vitamin D, and disease activity in children newly diagnosed with inflammatory bowel disease. Dig Dis Sci. 2011;56(3):825–9.

    Article  CAS  PubMed  Google Scholar 

  120. Sylvester FA, Gordon CM, Thayu M, Burnham JM, Denson LA, Essers J, et al. Report of the CCFA pediatric bone, growth and muscle health workshop, New York City, November 11-12, 2011, with updates. Inflamm Bowel Dis. 2013;19(13):2919–26.

    Article  PubMed  Google Scholar 

  121. Sylvester FA, Wyzga N, Hyams JS, Gronowicz GA. Effect of Crohn’s disease on bone metabolism in vitro: a role for interleukin-6. J Bone Miner Res. 2002;17(4):695–702.

    Article  CAS  PubMed  Google Scholar 

  122. Zou W, Hakim I, Tschoep K, Endres S, Bar-Shavit Z. Tumor necrosis factor-alpha mediates RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism. J Cell Biochem. 2001;83(1):70–83.

    Article  CAS  PubMed  Google Scholar 

  123. Dubner SE, Shults J, Baldassano RN, Zemel BS, Thayu M, Burnham JM, et al. Longitudinal assessment of bone density and structure in an incident cohort of children with Crohn’s disease. Gastroenterology. 2009;136(1):123–30.

    Article  PubMed  Google Scholar 

  124. Sylvester FA, Wyzga N, Hyams JS, Davis PM, Lerer T, Vance K, et al. Natural history of bone metabolism and bone mineral density in children with inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(1):42–50.

    Article  PubMed  Google Scholar 

  125. Paganelli M, Albanese C, Borrelli O, Civitelli F, Canitano N, Viola F, et al. Inflammation is the main determinant of low bone mineral density in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(4):416–23.

    Article  PubMed  Google Scholar 

  126. Vihinen MK, Kolho KL, Ashorn M, Verkasalo M, Raivio T. Bone turnover and metabolism in paediatric patients with inflammatory bowel disease treated with systemic glucocorticoids. Eur J Endocrinol. 2008;159(6):693–8.

    Article  CAS  PubMed  Google Scholar 

  127. Ward LM, Rauch F, Matzinger MA, Benchimol EI, Boland M, Mack DR. Iliac bone histomorphometry in children with newly diagnosed inflammatory bowel disease. Osteoporos Int. 2010;21(2):331–7.

    Article  CAS  PubMed  Google Scholar 

  128. Kappelman MD, Galanko JA, Porter CQ, Sandler RS. Risk of diagnosed fractures in children with inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(5):1125–30.

    Article  PubMed  Google Scholar 

  129. Semeao EJ, Stallings VA, Peck SN, Piccoli DA. Vertebral compression fractures in pediatric patients with Crohn’s disease. Gastroenterology. 1997;112(5):1710–3.

    Article  CAS  PubMed  Google Scholar 

  130. Rufo PA, Denson LA, Sylvester FA, Szigethy E, Sathya P, Lu Y, et al. Health supervision in the management of children and adolescents with IBD: NASPGHAN recommendations. J Pediatr Gastroenterol Nutr. 2012;55(1):93–108.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Brookes DS, Briody JN, Davies PS, Hill RJ. ABCD: Anthropometry, body composition, and Crohn disease. J Pediatr Gastroenterol Nutr. 2016;63(1):113–7.

    Article  PubMed  Google Scholar 

  132. Heaney RP, Dowell MS, Hale CA, Bendich A. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr. 2003;22(2):142–6.

    Article  CAS  PubMed  Google Scholar 

  133. Veerappan SG, Healy M, Walsh B, O’Morain CA, Daly JS, Ryan BM. A 1-year prospective study of the effect of infliximab on bone metabolism in inflammatory bowel disease patients. Eur J Gastroenterol Hepatol. 2016;28(11):1335–44.

    Article  CAS  PubMed  Google Scholar 

  134. Thayu M, Leonard MB, Hyams JS, Crandall WV, Kugathasan S, Otley AR, et al. Improvement in biomarkers of bone formation during infliximab therapy in pediatric Crohn’s disease: results of the REACH study. Clin Gastroenterol Hepatol. 2008;6(12):1378–84.

    Article  CAS  PubMed  Google Scholar 

  135. Sbrocchi AM, Forget S, Laforte D, Azouz EM, Rodd C. Zoledronic acid for the treatment of osteopenia in pediatric Crohn’s disease. Pediatr Int. 2010;52(5):754–61.

    Article  CAS  PubMed  Google Scholar 

  136. Leonard MB. A structural approach to skeletal fragility in chronic kidney disease. Semin Nephrol. 2009;29(2):133–43.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Denburg MR, Tsampalieros AK, de Boer IH, Shults J, Kalkwarf HJ, Zemel BS, et al. Mineral metabolism and cortical volumetric bone mineral density in childhood chronic kidney disease. J Clin Endocrinol Metab. 2013;98(5):1930–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schmitt CP, Mehls O. Mineral and bone disorders in children with chronic kidney disease. Nat Rev Nephrol. 2011;7(11):624–34.

    Article  CAS  PubMed  Google Scholar 

  139. Yan J, Sun W, Zhang J, Goltzman D, Miao D. Bone marrow ablation demonstrates that excess endogenous parathyroid hormone plays distinct roles in trabecular and cortical bone. Am J Pathol. 2012;181(1):234–44.

    Article  CAS  PubMed  Google Scholar 

  140. Wetzsteon RJ, Kalkwarf HJ, Shults J, Zemel BS, Foster BJ, Griffin L, et al. Volumetric bone mineral density and bone structure in childhood chronic kidney disease. J Bone Miner Res. 2011;26(9):2235–44.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tentori F, McCullough K, Kilpatrick RD, Bradbury BD, Robinson BM, Kerr PG, et al. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014;85(1):166–73.

    Article  PubMed  Google Scholar 

  142. Beaubrun AC, Kilpatrick RD, Freburger JK, Bradbury BD, Wang L, Brookhart MA. Temporal trends in fracture rates and postdischarge outcomes among hemodialysis patients. J Am Soc Nephrol. 2013;24(9):1461–9.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Dooley AC, Weiss NS, Kestenbaum B. Increased risk of hip fracture among men with CKD. Am J Kidney Dis. 2008;51(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  144. Yenchek RH, Ix JH, Shlipak MG, Bauer DC, Rianon NJ, Kritchevsky SB, et al. Bone mineral density and fracture risk in older individuals with CKD. Clin J Am Soc Nephrol. 2012;7(7):1130–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Akaberi S, Simonsen O, Lindergard B, Nyberg G. Can DXA predict fractures in renal transplant patients? Am J Transplant. 2008;8(12):2647–51.

    Article  CAS  PubMed  Google Scholar 

  146. Griffin LM, Kalkwarf HJ, Zemel BS, Shults J, Wetzsteon RJ, Strife CF, et al. Assessment of dual-energy X-ray absorptiometry measures of bone health in pediatric chronic kidney disease. Pediatr Nephrol. 2012;27(7):1139–48.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Waller S, Ridout D, Rees L. Bone mineral density in children with chronic renal failure. Pediatr Nephrol. 2007;22(1):121–7.

    Article  PubMed  Google Scholar 

  148. Denburg MR, Kumar J, Jemielita T, Brooks ER, Skversky A, Portale AA, et al. Fracture burden and risk factors in childhood CKD: results from the CKiD cohort study. J Am Soc Nephrol. 2016;27(2):543–50.

    Article  CAS  PubMed  Google Scholar 

  149. Bleyer WA. Cancer in older adolescents and young adults: epidemiology, diagnosis, treatment, survival, and importance of clinical trials. Med Pediatr Oncol. 2002;38(1):1–10.

    Article  PubMed  Google Scholar 

  150. Bradford NK, Chan RJ. Health promotion and psychological interventions for adolescent and young adult cancer survivors: a systematic literature review. Cancer Treat Rev. 2017;55:57–70.

    Article  PubMed  Google Scholar 

  151. Mostoufi-Moab S, Seidel K, Leisenring WM, Armstrong GT, Oeffinger KC, Stovall M, et al. Endocrine abnormalities in aging survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2016;34(27):3240–7.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Mostoufi-Moab S, Halton J. Bone morbidity in childhood leukemia: epidemiology, mechanisms, diagnosis, and treatment. Curr Osteoporos Rep. 2014;12(3):300–12.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Mostoufi-Moab S. Skeletal impact of retinoid therapy in childhood cancer survivors. Pediatr Blood Cancer. 2016;63(11):1884–5.

    Article  PubMed  Google Scholar 

  154. van der Sluis IM, van den Heuvel-Eibrink MM, Hahlen K, Krenning EP, de Muinck Keizer-Schrama SM. Altered bone mineral density and body composition, and increased fracture risk in childhood acute lymphoblastic leukemia. J Pediatr. 2002;141(2):204–10.

    Article  PubMed  Google Scholar 

  155. Arikoski P, Komulainen J, Riikonen P, Parviainen M, Jurvelin JS, Voutilainen R, et al. Impaired development of bone mineral density during chemotherapy: a prospective analysis of 46 children newly diagnosed with cancer. J Bone Miner Res. 1999;14(12):2002–9.

    Article  CAS  PubMed  Google Scholar 

  156. Mostoufi-Moab S, Brodsky J, Isaacoff EJ, Tsampalieros A, Ginsberg JP, Zemel B, et al. Longitudinal assessment of bone density and structure in childhood survivors of acute lymphoblastic leukemia without cranial radiation. J Clin Endocrinol Metab. 2012;97(10):3584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hobusch GM, Tiefenboeck TM, Patsch J, Krall C, Holzer G. Do patients after chondrosarcoma treatment have age-appropriate bone mineral density in the long term? Clin Orthop Relat Res. 2016;474(6):1508–15.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Halton J, Gaboury I, Grant R, Alos N, Cummings EA, Matzinger M, et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian Steroid-Associated Osteoporosis in the Pediatric Population (STOPP) research program. J Bone Miner Res. 2009;24(7):1326–34.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Alos N, Grant RM, Ramsay T, Halton J, Cummings EA, Miettunen PM, et al. High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol. 2012;30(22):2760–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wilson CL, Dilley K, Ness KK, Leisenring WL, Sklar CA, Kaste SC, et al. Fractures among long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Cancer. 2012;118(23):5920–8.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Salem KH, Brockert AK, Mertens R, Drescher W. Avascular necrosis after chemotherapy for haematological malignancy in childhood. Bone Joint J. 2013;95-B(12):1708–13.

    Article  CAS  PubMed  Google Scholar 

  162. Mostoufi-Moab S, Magland J, Isaacoff EJ, Sun W, Rajapakse CS, Zemel B, et al. Adverse fat depots and marrow adiposity are associated with skeletal deficits and insulin resistance in long-term survivors of pediatric hematopoietic stem cell transplantation. J Bone Miner Res. 2015;30(9):1657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu SC, Tsai CC, Huang CH. Atypical slipped capital femoral epiphysis after radiotherapy and chemotherapy. Clin Orthop Relat Res. 2004;426:212–8.

    Article  Google Scholar 

  164. Niinimaki RA, Harila-Saari AH, Jartti AE, Seuri RM, Riikonen PV, Paakko EL, et al. Osteonecrosis in children treated for lymphoma or solid tumors. J Pediatr Hematol Oncol. 2008;30(11):798–802.

    Article  CAS  PubMed  Google Scholar 

  165. Wasilewski-Masker K, Kaste SC, Hudson MM, Esiashvili N, Mattano LA, Meacham LR. Bone mineral density deficits in survivors of childhood cancer: long-term follow-up guidelines and review of the literature. Pediatrics. 2008;121(3):e705–13.

    Article  PubMed  Google Scholar 

  166. Skalba P, Guz M. Hypogonadotropic hypogonadism in women. Endokrynol Pol. 2011;62(6):560–7.

    PubMed  Google Scholar 

  167. Silveira LF, Latronico AC. Approach to the patient with hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2013;98(5):1781–8.

    Article  CAS  PubMed  Google Scholar 

  168. Forni PE, Wray S. GnRH, anosmia and hypogonadotropic hypogonadism – where are we? Front Neuroendocrinol. 2015;36:165–77.

    Article  CAS  PubMed  Google Scholar 

  169. Gordon CM, Kanaoka T, Nelson LM. Update on primary ovarian insufficiency in adolescents. Curr Opin Pediatr. 2015;27(4):511–9.

    Article  CAS  PubMed  Google Scholar 

  170. Gravholt CH, Juul S, Naeraa RW, Hansen J. Morbidity in Turner syndrome. J Clin Epidemiol. 1998;51(2):147–58.

    Article  CAS  PubMed  Google Scholar 

  171. Lucaccioni L, Wong SC, Smyth A, Lyall H, Dominiczak A, Ahmed SF, et al. Turner syndrome – issues to consider for transition to adulthood. Br Med Bull. 2015;113(1):45–58.

    Article  PubMed  Google Scholar 

  172. Yap F, Hogler W, Briody J, Moore B, Howman-Giles R, Cowell CT. The skeletal phenotype of men with previous constitutional delay of puberty. J Clin Endocrinol Metab. 2004;89(9):4306–11.

    Article  CAS  PubMed  Google Scholar 

  173. Ozbek MN, Demirbilek H, Baran RT, Baran A. Bone mineral density in adolescent girls with hypogonadotropic and hypergonadotropic hypogonadism. J Clin Res Pediatr Endocrinol. 2016;8(2):163–9.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Faje AT, Karim L, Taylor A, Lee H, Miller KK, Mendes N, et al. Adolescent girls with anorexia nervosa have impaired cortical and trabecular microarchitecture and lower estimated bone strength at the distal radius. J Clin Endocrinol Metab. 2013;98(5):1923–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Popat VB, Calis KA, Vanderhoof VH, Cizza G, Reynolds JC, Sebring N, et al. Bone mineral density in estrogen-deficient young women. J Clin Endocrinol Metab. 2009;94(7):2277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hansen S, Brixen K, Gravholt CH. Compromised trabecular microarchitecture and lower finite element estimates of radius and tibia bone strength in adults with turner syndrome: a cross-sectional study using high-resolution-pQCT. J Bone Miner Res. 2012;27(8):1794–803.

    Article  PubMed  Google Scholar 

  177. Soucek O, Zapletalova J, Zemkova D, Snajderova M, Novotna D, Hirschfeldova K, et al. Prepubertal girls with Turner syndrome and children with isolated SHOX deficiency have similar bone geometry at the radius. J Clin Endocrinol Metab. 2013;98(7):E1241–7.

    Article  CAS  PubMed  Google Scholar 

  178. Hogler W, Briody J, Moore B, Garnett S, PW L, Cowell CT. Importance of estrogen on bone health in Turner syndrome: a cross-sectional and longitudinal study using dual-energy X-ray absorptiometry. J Clin Endocrinol Metab. 2004;89(1):193–9.

    Article  PubMed  CAS  Google Scholar 

  179. Gravholt CH, Vestergaard P, Hermann AP, Mosekilde L, Brixen K, Christiansen JS. Increased fracture rates in Turner’s syndrome: a nationwide questionnaire survey. Clin Endocrinol. 2003;59(1):89–96.

    Article  Google Scholar 

  180. Zacharin M. Pubertal induction in hypogonadism: current approaches including use of gonadotrophins. Best Pract Res Clin Endocrinol Metab. 2015;29(3):367–83.

    Article  CAS  PubMed  Google Scholar 

  181. Cobb KL, Bachrach LK, Sowers M, Nieves J, Greendale GA, Kent KK, et al. The effect of oral contraceptives on bone mass and stress fractures in female runners. Med Sci Sports Exerc. 2007;39(9):1464–73.

    Article  CAS  PubMed  Google Scholar 

  182. Katzman DK, Misra M. Bone health in adolescent females with anorexia nervosa: what is a clinician to do? Int J Eat Disord. 2013;46(5):456–60.

    Article  PubMed  Google Scholar 

  183. Nakamura T, Tsuburai T, Tokinaga A, Nakajima I, Kitayama R, Imai Y, et al. Efficacy of estrogen replacement therapy (ERT) on uterine growth and acquisition of bone mass in patients with Turner syndrome. Endocr J. 2015;62(11):965–70.

    Article  CAS  PubMed  Google Scholar 

  184. Saggese G, Baroncelli GI, Bertelloni S, Barsanti S. The effect of long-term growth hormone (GH) treatment on bone mineral density in children with GH deficiency. Role of GH in the attainment of peak bone mass. J Clin Endocrinol Metab. 1996;81(8):3077–83.

    CAS  PubMed  Google Scholar 

  185. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS. Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr. 2004;80(2):514–23.

    Article  CAS  PubMed  Google Scholar 

  186. Stettler N, Berkowtiz RI, Cronquist JL, Shults J, Wadden TA, Zemel BS, et al. Observational study of bone accretion during successful weight loss in obese adolescents. Obesity (Silver Spring). 2008;16(1):96–101.

    Article  Google Scholar 

  187. Vandewalle S, Taes Y, Van Helvoirt M, Debode P, Herregods N, Ernst C, et al. Bone size and bone strength are increased in obese male adolescents. J Clin Endocrinol Metab. 2013;98(7):3019–28.

    Article  CAS  PubMed  Google Scholar 

  188. Pollock NK, Laing EM, Baile CA, Hamrick MW, Hall DB, Lewis RD. Is adiposity advantageous for bone strength? A peripheral quantitative computed tomography study in late adolescent females. Am J Clin Nutr. 2007;86(5):1530–8.

    CAS  PubMed  Google Scholar 

  189. Wey HE, Binkley TL, Beare TM, Wey CL, Specker BL. Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone outcomes in children. J Clin Endocrinol Metab. 2011;96(1):106–14.

    Article  CAS  PubMed  Google Scholar 

  190. Deere K, Sayers A, Viljakainen HT, Lawlor DA, Sattar N, Kemp JP, et al. Distinct relationships of intramuscular and subcutaneous fat with cortical bone: findings from a cross-sectional study of young adult males and females. J Clin Endocrinol Metab. 2013;98(6):E1041–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Laddu DR, Farr JN, Laudermilk MJ, Lee VR, Blew RM, Stump C, et al. Longitudinal relationships between whole body and central adiposity on weight-bearing bone geometry, density, and bone strength: a pQCT study in young girls. Arch Osteoporos. 2013;8:156.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Leonard MB, Zemel BS, Wrotniak BH, Klieger SB, Shults J, Stallings VA, et al. Tibia and radius bone geometry and volumetric density in obese compared to non-obese adolescents. Bone. 2015;73:69–76.

    Article  PubMed  Google Scholar 

  193. Adams AL, Kessler JI, Deramerian K, Smith N, Black MH, Porter AH, et al. Associations between childhood obesity and upper and lower extremity injuries. Inj Prev. 2013;19(3):191–7.

    Article  PubMed  Google Scholar 

  194. Kessler J, Koebnick C, Smith N, Adams A. Childhood obesity is associated with increased risk of most lower extremity fractures. Clin Orthop Relat Res. 2013;471(4):1199–207.

    Article  PubMed  Google Scholar 

  195. Bonjoch A, Figueras M, Estany C, Perez-Alvarez N, Rosales J, del Rio L, et al. High prevalence of and progression to low bone mineral density in HIV-infected patients: a longitudinal cohort study. AIDS. 2010;24(18):2827–33.

    Article  PubMed  Google Scholar 

  196. Pollock E, Klotsas AE, Compston J, Gkrania-Klotsas E. Bone health in HIV infection. Br Med Bull. 2009;92:123–33.

    Article  PubMed  Google Scholar 

  197. Fakruddin JM, Laurence J. HIV-1 Vpr enhances production of receptor of activated NF-kappaB ligand (RANKL) via potentiation of glucocorticoid receptor activity. Arch Virol. 2005;150(1):67–78.

    Article  CAS  PubMed  Google Scholar 

  198. Brown TT, McComsey GA, King MS, Qaqish RB, Bernstein BM, da Silva BA. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J Acquir Immune Defic Syndr. 2009;51(5):554–61.

    Article  CAS  PubMed  Google Scholar 

  199. Bedimo R, Maalouf NM, Zhang S, Drechsler H, Tebas P. Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral agents. AIDS. 2012;26(7):825–31.

    Article  CAS  PubMed  Google Scholar 

  200. Arpadi SM, Shiau S, Marx-Arpadi C, Yin MT. Bone health in HIV-infected children, adolescents and young adults: a systematic review. J AIDS Clin Res. 2014;5(11):pii: 374.

    Article  Google Scholar 

  201. Womack JA, Goulet JL, Gibert C, Brandt C, Chang CC, Gulanski B, et al. Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS One. 2011;6(2):e17217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Young B, Dao CN, Buchacz K, Baker R, Brooks JT, Investigators HIVOS. Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000-2006. Clin Infect Dis. 2011;52(8):1061–8.

    Article  PubMed  Google Scholar 

  203. Negredo E, Domingo P, Ferrer E, Estrada V, Curran A, Navarro A, et al. Peak bone mass in young HIV-infected patients compared with healthy controls. J Acquir Immune Defic Syndr. 2014;65(2):207–12.

    Article  PubMed  Google Scholar 

  204. Gatti D, Senna G, Viapiana O, Rossini M, Passalacqua G, Adami S. Allergy and the bone: unexpected relationships. Ann Allergy Asthma Immunol. 2011;107(3):202–6.

    Article  CAS  PubMed  Google Scholar 

  205. Wong CA, Walsh LJ, Smith CJ, Wisniewski AF, Lewis SA, Hubbard R, et al. Inhaled corticosteroid use and bone-mineral density in patients with asthma. Lancet. 2000;355(9213):1399–403.

    Article  CAS  PubMed  Google Scholar 

  206. Israel E, Banerjee TR, Fitzmaurice GM, Kotlov TV, LaHive K, LeBoff MS. Effects of inhaled glucocorticoids on bone density in premenopausal women. N Engl J Med. 2001;345(13):941–7.

    Article  CAS  PubMed  Google Scholar 

  207. Chinellato I, Piazza M, Sandri M, Peroni D, Piacentini G, Boner AL. Vitamin D serum levels and markers of asthma control in Italian children. J Pediatr. 2011;158(3):437–41.

    Article  CAS  PubMed  Google Scholar 

  208. Freishtat RJ, Iqbal SF, Pillai DK, Klein CJ, Ryan LM, Benton AS, et al. High prevalence of vitamin D deficiency among inner-city African American youth with asthma in Washington, DC. J Pediatr. 2010;156(6):948–52.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Pelajo CF, Lopez-Benitez JM, Miller LC. 25-hydroxyvitamin D levels and vitamin D deficiency in children with rheumatologic disorders and controls. J Rheumatol. 2011;38(9):2000–4.

    Article  CAS  PubMed  Google Scholar 

  210. Abdwani R, Abdulla E, Yaroubi S, Bererhi H, Al-Zakwani I. Bone mineral density in juvenile onset systemic lupus erythematosus. Indian Pediatr. 2015;52(1):38–40.

    Article  CAS  PubMed  Google Scholar 

  211. Stagi S, Cavalli L, Bertini F, Matucci Cerinic M, Luisa Brandi M, Falcini F. Cross-sectional and longitudinal evaluation of bone mass and quality in children and young adults with juvenile onset systemic lupus erythematosus (JSLE): role of bone mass determinants analyzed by DXA, PQCT and QUS. Lupus. 2014;23(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  212. Caetano M, Terreri MT, Ortiz T, Pinheiro M, Souza F, Sarni R. Bone mineral density reduction in adolescents with systemic erythematosus lupus: association with lack of vitamin D supplementation. Clin Rheumatol. 2015;34(12):2065–70.

    Article  CAS  PubMed  Google Scholar 

  213. Burnham JM, Shults J, Sembhi H, Zemel BS, Leonard MB. The dysfunctional muscle-bone unit in juvenile idiopathic arthritis. J Musculoskelet Neuronal Interact. 2006;6(4):351–2.

    CAS  PubMed  Google Scholar 

  214. Burnham JM, Shults J, Weinstein R, Lewis JD, Leonard MB. Childhood onset arthritis is associated with an increased risk of fracture: a population based study using the General Practice Research Database. Ann Rheum Dis. 2006;65(8):1074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Rodd C, Lang B, Ramsay T, Alos N, Huber AM, Cabral DA, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res (Hoboken). 2012;64(1):122–31.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Huber AM, Gaboury I, Cabral DA, Lang B, Ni A, Stephure D, et al. Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res (Hoboken). 2010;62(4):516–26.

    Article  CAS  Google Scholar 

  217. LeBlanc CM, Ma J, Taljaard M, Roth J, Scuccimarri R, Miettunen P, et al. Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders. J Bone Miner Res. 2015;30(9):1667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Martinez AE, Allgrove J, Brain C. Growth and pubertal delay in patients with epidermolysis bullosa. Dermatol Clin. 2010;28(2):357–9. xii.

    Article  CAS  PubMed  Google Scholar 

  219. Bruckner AL, Bedocs LA, Keiser E, Tang JY, Doernbrack C, Arbuckle HA, et al. Correlates of low bone mass in children with generalized forms of epidermolysis bullosa. J Am Acad Dermatol. 2011;65(5):1001–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecka Peebles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sieke, E.H., Peebles, R. (2018). Bone Health in Adolescents with Chronic Disease. In: Pitts, S., Gordon, C. (eds) A Practical Approach to Adolescent Bone Health . Springer, Cham. https://doi.org/10.1007/978-3-319-72880-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72880-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72879-7

  • Online ISBN: 978-3-319-72880-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics