Skip to main content

Optimizing Bone Mass Accrual in Healthy Adolescents

  • Chapter
  • First Online:
A Practical Approach to Adolescent Bone Health
  • 545 Accesses

Abstract

Adolescence provides a uniquely important period of opportunity to improve skeletal health across the lifespan, potentially even reducing the lifetime risk of osteoporosis. Because inherited factors account for as much as 80% of predicted peak bone mass, the relatively few factors amenable to modification become essential to understand for those clinicians who monitor the growth and development of children and adolescents. The modifiable factors include such lifestyle choices as dietary intake, physical activity, maintaining a healthy weight for height, contraceptive choice, and use of tobacco and alcohol. In addition to ensuring normal pubertal development, primary care providers can help guide patients to healthy choices for the bone that are aligned perfectly with other lifelong benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonjour JP, Thientz G, Buchs B, et al. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73:555–63.

    Article  CAS  PubMed  Google Scholar 

  2. Thientz G, Buchs G, Rizzoli R, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75:1060–5.

    Google Scholar 

  3. Southard RN, Morris JD, Mahan JD, et al. Bone mass in healthy children: measurement with quantitative DXA. Radiology. 1991;179:735–8.

    Article  CAS  PubMed  Google Scholar 

  4. McCormick DP, Ponder SW, Fawcett HD, Palmer JL. Spinal bone mineral density in 335 normal and obese children and adolescents: evidence for ethnic and sex differences. J Bone Miner Res. 1991;6:507–13.

    Article  CAS  PubMed  Google Scholar 

  5. Zemel BS, Kalkwarf HJ, Gilsanz V, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96:3160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bachrach LK. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab. 2001;12:22–8.

    Article  CAS  PubMed  Google Scholar 

  7. Weaver CM, Gordon CM, Janz KF, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27:1281–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bailey DA, McKay HA, Mirwald RL, et al. A six-year longitudinal study of the relationship of physical activity to bone mineral accrural in growing children: the University of Saskatchewan Bone Mineral Accrural Study. J Bone Miner Res. 1999;14:1672–9.

    Article  CAS  PubMed  Google Scholar 

  9. Bailey DA, Martin AD, McKay HA, et al. Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res. 2000;15:2245–50.

    Article  CAS  PubMed  Google Scholar 

  10. Bachrach LK, Hastie T, Marcus R, et al. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab. 1999;84:4702–12.

    CAS  PubMed  Google Scholar 

  11. Kalkwarf HJ, Zemel BS, Gilsanz V, et al. The bone mineral density in childhood study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab. 2007;92:2087–99.

    Article  CAS  PubMed  Google Scholar 

  12. Gilsanz V, Roe TF, Mora S, et al. Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med. 1991;325:1597–600.

    Article  CAS  PubMed  Google Scholar 

  13. Seeman E, Hopper JL, Bach LA, et al. Reduced bone mass in daughters of women with osteoporosis. N Engl J Med. 1989;320:554–8.

    Article  CAS  PubMed  Google Scholar 

  14. Pocock NA, Eisman JA, Hopper JL, et al. Genetic determinants of bone mass in adults. J Clin Invest. 1987;80:706–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown MA, Haughton MA, Grant SF, et al. Genetic control of bone density and turnover: role of the collagen1alpha1, estrogen receptor, and vitamin D receptor genes. J Bone Miner Res. 2001;16:758–64.

    Article  CAS  PubMed  Google Scholar 

  16. Richards JB, Zheng HF, Spector TD. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet. 2012;13:576–88.

    Article  CAS  PubMed  Google Scholar 

  17. Gerdhem P, Obrant KJ. Bone mineral density in old age: the influence of age at menarche and menopause. J Bone Miner Metab. 2004;22:372–5.

    Article  PubMed  Google Scholar 

  18. Riggs BL, Khosla S, Melton LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23:279–302.

    Article  CAS  PubMed  Google Scholar 

  19. McKay HA, Bailey DA, Mirwald RL, et al. Peak bone mineral accrual and age at menarche in adolescent girls: a 6-year longitudinal study. J Pediatr. 1998;133:682–7.

    Article  CAS  PubMed  Google Scholar 

  20. Naka H, Iki M, et al. Effects of pubertal development, height, weight, and grip strength on the bone mineral density of the lumbar spine and hip in peripubertal Japanese children: Kyoto kids increase density in the skeleton study (Kyoto KIDS study). J Bone Miner Metab. 2005;23:463–9.

    Article  PubMed  Google Scholar 

  21. Gilsanz V, Chalfant J, Kalkwarf H, et al. Age at onset of puberty predicts bone mass in young adulthood. J Pediatr. 2011;158:100–5.

    Article  PubMed  Google Scholar 

  22. Blum M, Harris SS, Must A, et al. Weight and body mass index at menarche are associated with premenopausal bone mass. Osteoporos Int. 2001;12:588–94.

    Article  CAS  PubMed  Google Scholar 

  23. Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res. 2005;20:2090–6.

    Article  PubMed  Google Scholar 

  24. Goulding A, Taylor RW, Jones IE, et al. Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord. 2000;24:627–32.

    Article  CAS  PubMed  Google Scholar 

  25. El Hage R, Moussa E, Jacob C. Bone mineral content and density in obese, overweight, and normal-weighted sedentary adolescent girls. J Adolesc Health. 2010;47:591–5.

    Article  PubMed  Google Scholar 

  26. Russell M, Mendes N, et al. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab. 2010;95:1247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Russell M, Misra M. Influence of ghrelin and adipocytokines on bone mineral density in adolescent female athletes with amenorrhea and eumenorrheic athletes. Med Sport Sci. 2010;55:103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. MacKelvie KJ, Khan KM, McKay HA. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? A systematic review. Br J Sports Med. 2002;36:250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Strong WB, Malina RM, Blimkie CJR, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146:732–7.

    Article  PubMed  Google Scholar 

  30. Kohrt WM, Bloomfield SA, Little KD, et al. American College of Sports Medicine position stand: physical activity and bone health. Med Sci Sports Exerc. 2004;36:1985–96.

    Article  PubMed  Google Scholar 

  31. National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (CDC). Trends in the prevalence of physical activity and sedentary behaviors. National YRBS: 1991—2015. www.cdc.gov/healthyyouth/data/yrbs/pdf/trends/2015_us_physical_trend_yrbs.pdf. Accessed 8 May 2017.

  32. Specker BL. Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J Bone Miner Res. 1996;11:1539–44.

    Article  CAS  PubMed  Google Scholar 

  33. Bailey RL, Dodd KW, et al. Estimation of total usual calcium and vitamin D intakes in the United States. J Nutrition. 2010;140:817–22.

    Article  CAS  Google Scholar 

  34. Wyshak G. Teenaged girls, carbonated beverage consumption, and bone fractures. Arch Pediatr Adolesc Med. 2000;154:610–3.

    Article  CAS  PubMed  Google Scholar 

  35. Wyshak G, Frisch RE. Carbonated beverages, dietary calcium, the dietary calcium/phosphorous ratio, and bone fractures in girls and boys. J Adolesc Health. 1994;15:210–5.

    Article  CAS  PubMed  Google Scholar 

  36. Whiting SJ, Vatanparast H, Baxter-Jones A, et al. Factors that affect bone mineral accrual in the adolescent growth spurt. J Nutr. 2004;134:696S–700S.

    Article  PubMed  Google Scholar 

  37. Kaunitz AM. Depo-Provera’s black box: time to reconsider? Contraception. 2005;72:165–7.

    Article  PubMed  Google Scholar 

  38. Need AG, Kemp A, Giles N, et al. Relationships between intestinal calcium absorption, serum vitamin D metabolites and smoking in postmenopausal women. Osteoporos Int. 2002;13:83–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith J. Loud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loud, K.J. (2018). Optimizing Bone Mass Accrual in Healthy Adolescents. In: Pitts, S., Gordon, C. (eds) A Practical Approach to Adolescent Bone Health . Springer, Cham. https://doi.org/10.1007/978-3-319-72880-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72880-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72879-7

  • Online ISBN: 978-3-319-72880-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics