How Can Global Change Affect Insect Population Dynamics in Mediterranean Ecosystems? A Case Study with Pine Shoot Beetle and Pine Processionary Moth

  • Teresa Maria VasconcelosEmail author
  • Isabel Maria Duarte
Part of the Climate Change Management book series (CCM)


Many insect species are able to cause important damage in agriculture, forestry and human health due to their ability to feed on plants and animals tissues or transmit fungi and other diseases. Entomologists have long recognised that periods of atypical weather conditions, such as drought, excessive precipitation or unusually hot or cold weather, have great impact on insect development. Understanding the effects of climate on ecological processes has become increasingly important in entomological research as a result of global warming, which appears to be affecting their geographic ranges and population dynamics. In Mediterranean ecosystems, pine shoot beetle, Tomicus destruens Woll, and pine processionary moth, Thaumetopoa pityocampa (Denis & Schiff), are examples of species that origin problems to man. Tomicus destruens is a phytophagus insect responsible for several damages on maritime pine (Pinus pinaster Aiton) stands during its feeding on needles and its capacity to inoculate fungi and other decaying biotic agents. Thaumetopoea pityocampa is also responsible for damages in P. pinaster stands and can provoke strong allergic reactions due the presence of urticains hairs. Both species have a physiological response to the temperature variation, which is observed in the life cycle duration and in the mortality rate. The present study aims to highlight the effect of global change/global warming in the bioecology of those Mediterranean species and their implication in forest productivity and human health.


Climate change Mediterranean ecosystems Insect dynamics Tomicus piniperda T. destruens Thaumetopoea pityocampa 



This work is funded by National Funds through the FCT (Portuguese Foundation for Science and Technology) under the project PEst-OE/AGR/UI0681/2014.


  1. Arnaldo, P. S., Chacim, S., & Lopes, D. (2010). Effects of defoliation by the pine processionary moth Thaumetopoea pityocampa on biomass growth of young stands of Pinus pinaster in northern Portugal. Forest-Biogeosciences and Forestry, 3, 159–162.CrossRefGoogle Scholar
  2. Arnaldo, P. S., Oliveira, I., Santos, J., Leite, S., Mendes Lopes, D. M., & Tome, M. (2011). Climate change and forest plagues: The case of the pine processionary moth in Northeastern Portugal. Forest Systems, 20(3), 508–515.CrossRefGoogle Scholar
  3. Bakke, A. (1968). Ecological studies of bark beetles (Col. Scolytidae) associated with Scots pine (Pinus sylvestris L.) in Norway with particular reference to the influence of temperature. Meddelelser fra det Norske Skogsforsokvesen, 21(83), 443–602.Google Scholar
  4. Barbéro, M., Loisel, R., Quézel, P., Richardson, D. M., & Romane, F. (1998). Pines of the mediterranean basin (pp. 153–170). Ecology and Biogeography of Pinus: Cambridge University Press, Cambridge.Google Scholar
  5. Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A., et al. (2005). Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological Applications, 15(6), 2084–2096.CrossRefGoogle Scholar
  6. Ben-Jamâa, M., Lieutier, F., & Jerraya, A. (2000). Les Scolytes ravageurs des pins en Tunisie. Annales de L’ inrgref, 4, 27–39.Google Scholar
  7. Berryman, A., Stenseth, N., & Wollkind, D. (1984). Metastability of forest ecosystem infested by bark beetles. Researches on Population Ecology, 26, 13–29.CrossRefGoogle Scholar
  8. Berryman, A. (1988). Pest and the stability of forest ecosystem. Northwest Environmental Journal, 4, 351–355.Google Scholar
  9. Bond, W. J. (1989). The tortoise and the hare: Ecology of angiosperm dominance and gymnosterm persistence. Biological Journal of the Linnean Society, 36, 227–249.CrossRefGoogle Scholar
  10. Capelo, J., Aguiar, C. (2005). História Holocénica dos Pinus em Portugal. Uma interpretação geobotânica. In R. Silva & F. Páscoa (Eds.), Actas do 5º Congresso Florestal Nacional, SPCF-Edições, Lisboa, Portugal.Google Scholar
  11. Carle, P. (1974). The decline of Pinus pinaster in Provence. Role of insects in changing the biological equilibrium of forests invaded by Matsucoccus feytaudi. Annales des Sciences Forestières, 31(1), 1–26.CrossRefGoogle Scholar
  12. Chakali, G. (2005). L’ hilésine des pins, Tomicus destruens Wollaston 1865 (Coleoptera, Scolytidae) en zone semi-aride (Algérie). Silva Lusitana, 13(1), 113–124.Google Scholar
  13. Chararas, C. (1962). Scolytides des Conifères (p. 556). Lechevalier. Paris: Encyclopédie Entomologique- XXXVIII, Éditions P.Google Scholar
  14. Christiansen, E., Waring, R., & Berryman, A. (1987). Resistance of conifers to bark beetle attack: Searching for general relationship. Forest Ecology and Management, 22, 89–106.CrossRefGoogle Scholar
  15. Czokajlo, D., Wink, R., Warren, J., & Peale, S. (1997). Grow reduction of Scots pine, Pinus sylvestris, caused by the larger pine shoot beetle Tomicus piniperda (Coleoptera: Scolytidae), in the New York state. Canadian Journal of Forest Research, 27, 1394–1397.CrossRefGoogle Scholar
  16. Devkota, B., & Schmidt, G. H. (1990). Larval development of Thaumetopoea pityocampa (Den. & Schiff.) (Lepidoptera, Thaumetopoeidea) from Greece as influenced by different host plants under laboratory conditions. Journal of Applied Entomology, 209, 321–330.CrossRefGoogle Scholar
  17. Duan, Y., Kerdelhué, C., Ye, H., & Lieutier, F. (2004). Genetic study of the forest pest Tomicus piniperda (Col., Scolytinae) in Yunnan province (China) compared to Europe: new insights for the systematics and evolution of the genus Tomicus. Heredity, 93, 416–422.CrossRefGoogle Scholar
  18. Faccoli, M., Piscedda, A., Salvato, P., Simonato, M., Masutti, L., & Battisti, A. (2005). Genetic structure and phylogeography of pine shoot beetle populations (Tomicus destruens and Tomicus piniperda, Coleoptera, Scolytidae) in Italy. Annals of Forest Science, 62, 361–368.CrossRefGoogle Scholar
  19. Ferreira, M. C., Ferreira, G. W. (1990). Pragas das resinosas - Guia de campo. Série Divulgação, 3. Ministério da Agricultura, Lisboa.Google Scholar
  20. Fouseki, E., & Margaris, N. (1981). Soil metabolism and decomposition in a phryganic (East Mediterranean) ecosystem. Oecologia, 50, 47–421.CrossRefGoogle Scholar
  21. Gallego, D., Canovas, F., Esteve, M. A., & Galian, J. (2004). Descriptive biogeography of Tomicus (Coleoptera: Scolytidae) species in Spain. Journal of Biogeography, 31, 2011–2024.CrossRefGoogle Scholar
  22. Ghaioule, D., Abourouh, M., Bakry, M., & Haddam, M. (1998). Insects ravageurs des forêts au Maroc. Annales de la Recherche Forestière au Maroc, 31, 129–156.Google Scholar
  23. Guerrero, A., Feixas, J., Pajares, J., Wadhams, L. J., Pickett, J. A., & Woodcock, C. M. (1997). Semiochemical induced inhibition of behaviour of Tomicus destruens (Woll.) (Coleoptera: Scolytidae). Naturwissenschaften, 84, 155–157.CrossRefGoogle Scholar
  24. Horn, A., Kerdelhué, C., Lieutier, F., & Rossi, J. P. (2012). Predicting the distribution of the two bark beetles Tomicus destruens and Tomicus piniperda in Europe and the Mediterranean region. Agricultural and Forest Entomology, 14(4), 358–366.CrossRefGoogle Scholar
  25. Kerdelhué, C., Roux-Morabito, G., Forichon, J., Chambon, J.-M., Robert, A., & Lieutier, F. (2002). Population genetic structure of Tomicus piniperda L. (Coleoptera: Scolytidae) and validation of T. destruens (Woll.). Molecular Ecology, 11, 483–494.CrossRefGoogle Scholar
  26. Langström, B. (1980). Distribution of pine shoot beetle attacks within the crown Scots pine. Studia Forestalia Suecica, 154.Google Scholar
  27. Langström, B. (1983). Life cycles and shoot-feeding of the pine shoot beetles. Studia Forestalia Suecica, 163, 1–29.Google Scholar
  28. Langström, B., Annila, E., Hellqvist, C., Varama, M., & Niemela, P. (2001). Tree mortality, needle biomass recovery and growth losses in Scots pine following defoliation by Diprion pini and subsequent attack by Tomicus piniperda. Scandinavian Journal of Forest Research, 16, 342–353.CrossRefGoogle Scholar
  29. Langström, B., & Hellqvist, C. (1990). Spatial distribution of crown damage and growth losses caused by recurrent attacks of pine shoot beetles in pine stands surronding a pulp mill in Southern Sweden. Journal of Applied Entomology, 110, 261–269.CrossRefGoogle Scholar
  30. Långström, B., Hellqvist, C., Ehnström, B. (1999). Susceptibility of fire-damaged Scots pine (Pinus sylvestris L.) trees to attack by Tomicus piniperda L. In F. Lieutier, W. J. Mattson, M. R. Wagner (Eds.). Physiology and genetics of tree-phytophage interactions. Colloques de l’INRA, Versailles: INRA Editions, 90, 299–311.Google Scholar
  31. Langström, B., Hellqvist, C., Ericsson, A., & Grefr, R. (1992). Induced defence reaction in Scots pine following stem attacks by Tomicus piniperda. Ecography, 15, 318–327.CrossRefGoogle Scholar
  32. Lieutier, F. (1991). Les coléopteres Scolytidae en France et les recherches menées par INRA. Bulletin de la Societé Zoologique Française, 116, 275–281.Google Scholar
  33. Lieutier, F., Garcia, J., Yart, A., & Romary, P. (1995). Wound reactions of Scots pine (Pinus sylvestris L.) to attacks by Tomicus piniperda L. and Ips sexdentatus Boern. (Col., Scolytidae). Journal of Applied Entomology, 119, 591–600.CrossRefGoogle Scholar
  34. Lieutier, F., Ye, H., & Yart, A. (2003). Shoot damage by Tomicus sp. (Coleoptera: Scolytidae) and effect on Pinus yunnanensis resistance to subsequent reproductive attacks in the stem. Agricultural and Forest Entomology, 5, 227–233.CrossRefGoogle Scholar
  35. Mendel, Z., Madar, Z., & Golan, Y. (1985). Comparison of the seasonal occurrence and behaviour of seven pine bark beetles (Coleoptera: Scolytidae) in Israel. Phytoparasitica, 13, 21–32.CrossRefGoogle Scholar
  36. Miller, T. (1986). Insect-Plant Interactions. In J. Miller, T. Miller (Eds.), Springer.Google Scholar
  37. Netherer, S., & Schopf, A. (2010). Potential effects of climate change on insect herbivores in European forests—general aspects and the pine processionary moth as specific example. Forest Ecology and Management, 259(4), 831–838.CrossRefGoogle Scholar
  38. Nylinder, M., Lunström, H., & Fryk, H. (2000). Skador och fel pa tall-och grantimmer. Sweden (in Swedish): Swedish University of Agricultural Sciences.Google Scholar
  39. Paiva, M. R., Santos, H., Branco, M. (2012). Processionária do pinheiro na Mata Nacional de Leiria documenta caso muito raro de especiação simpátrica. Notas Técnicas, 20.Google Scholar
  40. Petrice, T., Haack, A., & Poland, T. (2002). Selection of overwintering sites by Tomicus piniperda (Coleopter, Scolytidae) during fall shoot departure. Journal of Entomological Science, 37, 48–59.CrossRefGoogle Scholar
  41. Pimentel, C., Calvão, T., Santos, M., Ferreira, C., Neves, M., & Nilsson, J. Å. (2006). Establishment and expansion of a Thaumetopoea pityocamp (Den. & Schiff.) (Lep. Notodontidae) population with a shifted life cycle in a production pine forest, Central-Coastal Portugal. Forest Ecology and Management, 233(1), 108–115.CrossRefGoogle Scholar
  42. Pimentel, C., Santos, M., Ferreira, C., & Nilsson, J. Å. (2012). Temperature, size, reproductive allocation, and life-history evolution in a gregarious caterpillar. Biological Journal of the Linnean Society, 105(2), 340–349.CrossRefGoogle Scholar
  43. Rapp, M., Regina, I. S., Rico, M., & Gallego, H. A. (1999). Biomass nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forests. Forest Ecology and Management, 119, 39–49.CrossRefGoogle Scholar
  44. Régnière, J., Powell, J., Bentz, B., & Nealis, V. (2012). Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. Journal of Insect Physiology, 58(5), 634–647.CrossRefGoogle Scholar
  45. Reich, P. B., Kloeppel, B. D., Ellsworth, D. S., & Walters, M. B. (1995). Different photosynthesis-nitrogen relations in decidous hardwood and evergreen coniferous tree species. Oecologia, 104, 24–30.CrossRefGoogle Scholar
  46. Rousselet, J., Zhao, R., Argal, D., Simonato, M., Battisti, A., Roques, A., et al. (2010). The role of topography in structuring the demographic history of the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera: Notodontidae). Journal of Biogeography, 37(8), 1478–1490.Google Scholar
  47. Santos, H., Burban, C., Rousselet, J., Rossi, J. P., Branco, M., & Kerdelhué, C. (2011). Incipient allochronic speciation in the pine processionary moth (Thaumetopoea pityocampa, Lepidoptera, Notodontidae). Journal of Evolutionary Biology, 24(1), 146–158.CrossRefGoogle Scholar
  48. Santos, H., Rousselet, J., Magnoux, E., Paiva, M. R., Branco, M., & Kerdelhué, C. (2007). Genetic isolation through time: allochronic differentiation of a phenologically atypical population of the pine processionary moth. Proceedings of the Royal Society B: Biological Sciences, 274(1612), 935–941.CrossRefGoogle Scholar
  49. Sauvard, D., Lieutier, F., & Levieux, J. (1987). Répartition spatiale et dispersión de Tomicus piniperda L. (Coleoptera, Scolytidae) en foret d’ Orleáns. Annales des Sciences Forestières, 44, 417–434.CrossRefGoogle Scholar
  50. Sauvard, S. (1989). Capacités de multiplication de Tomicus piniperda L. (Col. Scolytidae). Journal of Applied Entomology, 108, 164–181.CrossRefGoogle Scholar
  51. Solheim, H., Langström, B., & Hellqvist, C. (1992). Pathogenicity of the blue stain fungi Leptographium wingfieldii and Ophiostoma minus to Scots pine: Effect of tree pruning and inoculum density. Canadian Journal of Forest Research, 23, 1438–1443.CrossRefGoogle Scholar
  52. Van Halder, I. (2002). Pragas e doenças das florestas do Sul da Europa. Cestas: IEFC- Institut Européen de la Forêt Cultivée.Google Scholar
  53. Vasconcelos, T. & Duarte, I. (2015). Biotic/Abiotic Factors-Plant. Chapter VI: 193–220. In E. Sousa, F. Vale & I. Abrantes (Eds), Pine Wilt Disease in Europe. Biological Interactions and Integrated Management. 328p. Edição FNAP, ISBN 978-989-99365-2-2.Google Scholar
  54. Vasconcelos, T. M. (2005). Structuration des populations portugaises de Tomicus spp (Coleoptera: Scolytinae), aspects moléculaires et comportamentaux en liaison avec les espèces de pins hôtes. Dissertação de Doutoramento em Engenharia Florestal e em Biologie et Ecologie des populations. Instituto Superior de Agronomia, Universidade Técnica de Lisboa and École Doctorale de la Universidade de Orléans.Google Scholar
  55. Vasconcelos T., Branco, M., Gonçalves M. & Cabral, T. (2005). Observation on flying activity of Tomicus spp. in Portugal during a long period. In. Lieutier F., Ghaioule D. (Eds). Entomological research in mediterranean forest ecosystems, INRA-Editions, Versailles, France.Google Scholar
  56. Wood, S., Bright, D. (1992). A Catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic Index Vol. A. Great Basin Naturalist Memoirs, 13, Brigham Young University, 1553 pp.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Teresa Maria Vasconcelos
    • 1
    • 2
    Email author
  • Isabel Maria Duarte
    • 1
    • 2
  1. 1.College of Agriculture, Polytechnic of CoimbraCoimbraPortugal
  2. 2.Research Center for Natural Resources, Environment and Society Linking Landscape (CERNAS)Polytechnic of CoimbraCoimbraPortugal

Personalised recommendations