Advertisement

Coffee Responses to Drought, Warming and High [CO2] in a Context of Future Climate Change Scenarios

  • José Nobre Semedo
  • Weverton P. Rodrigues
  • Danielly Dubberstein
  • Madlles Q. Martins
  • Lima D. Martins
  • Isabel P. Pais
  • Ana P. Rodrigues
  • António E. Leitão
  • Fábio L. Partelli
  • Eliemar Campostrini
  • Marcelo A. Tomaz
  • Fernando H. Reboredo
  • Paula Scotti-Campos
  • Ana I. Ribeiro-Barros
  • Fernando C. Lidon
  • Fábio M. DaMatta
  • José C. Ramalho
Chapter
Part of the Climate Change Management book series (CCM)

Abstract

Climate variability strongly determines agricultural productivity, further causing important economic and social impacts. In a context of global climate changes, the continuous enhancement of agricultural production in the coming years is a major challenge for plant science research. Coffee, one of the most important agricultural commodities worldwide, is grown in more than 80 countries in the tropical region. Several estimates point to a strong reduction on both coffee yields and suitable areas in a near future, mostly related to predicted rising temperature, but also due to changes in intra- and inter-annual rainfall amounts and distributions. Nonetheless, recent findings from our team has shown that the coffee plant is more resilient that usually accepted, and that the negative impacts of rising temperature, at physiological and biochemical levels, were strongly mitigated by enhanced air [CO2], which is considered one of the promoting agents of temperature rise. Also, the identification of ecophysiological and molecular traits that can promote plant acclimation to warming, in particular those related to the C-assimilation pathway, would foster the selection of more adapted/tolerant genotypes. In this context, this work aims at envisage leaf physiological responses in Coffea spp. subjected to supra-optimal temperatures, increased [CO2], and water shortage conditions, contributing to this crop sustainability.

Keywords

Agriculture Climate changes CO2 Coffee crop Physiological heat impact Warming Water shortage 

Notes

Acknowledgements

This work was partly supported by Portuguese national funds from Fundação para a Ciência e a Tecnologia through the projects PTDC/AGR-PRO/3386/2012, the research units UID/AGR/04129/2013 (LEAF) and UID/GEO/04035/2013 (GeoBioTec). Brazilian funding from CAPES (grants PDSE: 000427/2014-04, W.P. Rodrigues; 0343/2014-05, M. Q. Martins), CNPq and Fapemig (fellowships to F. M. DaMatta, F. Partelli and E. Campostrini) are also greatly acknowledged.

References

  1. Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant, Cell and Environment, 30, 258–270.CrossRefGoogle Scholar
  2. Alonso, A., Queiroz, C. S., & Magalhães, A. C. (1997). Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L.) seedlings. Biochimica et Biophysica Acta, 1323, 75–84.CrossRefGoogle Scholar
  3. Bader, M. K.-F., Siegwolf, R., & Körner, C. (2010). Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment. Planta, 232, 1115–1125.CrossRefGoogle Scholar
  4. Batista-Santos, P., Lidon, F. C., Fortunato, A., Leitão, A. E., Lopes, E., Partelli, F., et al. (2011). The impact of cold on photosynthesis in genotypes of Coffea spp.—Photosystem sensitivity, photoprotective mechanisms and gene expression. Journal of Plant Physiology, 168, 792–806.CrossRefGoogle Scholar
  5. Boisvenue, C., & Running, S. W. (2006). Impacts of climate change on natural forest productivity—Evidence since the middle of the 20th century. Global Change Biology, 12, 862–882.CrossRefGoogle Scholar
  6. Buckeridge, M. S., Mortari, L. C., & Machado, M. R. (2007). Respostas fisiológicas às mudanças climáticas: Alterações no balanço de carbono nas plantas podem afetar o ecossistema? In Fenologia-Ferramenta para conservação e manejo de recursos vegetais arbóreos (Editores técnicos), Embrapa Floresta, pp. 1–13.Google Scholar
  7. Bunn, C., Läderach, P., Pérez Jimenez, J. G., Montagnon, C., & Schilling, T. (2015a). Multiclass classification of agro-ecological zones for arabica coffee: An improved understanding of the impacts of climate change. PLoS ONE, 10(10), e0140490.CrossRefGoogle Scholar
  8. Bunn, C., Läderach, P., Rivera, O. O., & Kirschke, D. A. (2015b). Bitter cup: Climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129, 89–101.CrossRefGoogle Scholar
  9. Camargo, A. P. (1985). O clima e a cafeicultura no Brasil. Informe Agropecuário, 11, 13–26.Google Scholar
  10. Camargo, A. P., & Camargo, M. B. P. (2001). Definition and outline for the phenological phases of arabic coffee under Brazilian tropical conditions. Bragantia, 60, 65–68.CrossRefGoogle Scholar
  11. Campos, P. S., Quartin, V., Ramalho, J. C., & Nunes, M. A. (2003). Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. Journal of Plant Physiology, 160, 283–292.CrossRefGoogle Scholar
  12. Cavatte, P. C., Oliveira, A. A., Morais, L. E., Martins, S. C., Sanglard, L. M., & DaMatta, F. M. (2012). Could shading reduce the negative impacts of drought on coffee? A morphophysiological analysis. Physiologia Plantarum, 114, 111–122.CrossRefGoogle Scholar
  13. Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—From genes to the whole plant. Functional Plant Biology, 30, 239–264.CrossRefGoogle Scholar
  14. CONAB (Companhia Nacional de Abastecimento). (2017). Acompanhamento da safra brasileira de café 2017. Primeiro Levantamento, observatório agrícola: 1–99.Google Scholar
  15. Craparo, A. C. W., Van Asten, P. J. A., Läderach, P., Jassogne, L. T. P., & Grab, S. W. (2015). Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology, 207, 1–10.CrossRefGoogle Scholar
  16. Crisosto, C. H., Grantz, D. A., & Meinzer, F. C. (1992). Effects of water deficit on flower opening in coffee (Coffea arabica L.). Tree Physiology, 10, 127–139.CrossRefGoogle Scholar
  17. CSIRO (Commonwealth Scientific and Industrial Research Organisation). (2016). State of the climate 2016. The biennial CSIRO and Bureau of Meteorology State of the Climate report. www.csiro.au. Accessed February 17, 2017.
  18. Custódio, A. A. P., Lemos, L. B., Mingotte, F. L. C., Barbosa, J. C., Pollo, G. Z., & Santos, H. M. (2014). Florescimento de cafeeiros sob manejos de irrigação faces de exposição solar e posições na planta. Coffee Science, 9, 245–257.Google Scholar
  19. DaMatta, F. M., Godoy, A. G., Menezes-Silva, P. E., Martins, S. C. V., Sanglard, L. M., Morais, L. E., et al. (2016). Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: Disentangling the contributions of stomatal, mesophyll, and biochemical limitations. Journal of Experimental Botany, 67, 341–352.CrossRefGoogle Scholar
  20. DaMatta, F. M., Grandis, A., Arenque, B. C., & Buckeridge, M. S. (2010). Impacts of climate changes on crop physiology and food quality. Food Research International, 43, 1814–1823.CrossRefGoogle Scholar
  21. DaMatta, F. M., & Ramalho, J. D. C. (2006). Impacts of drought and temperature stress on coffee physiology and production: A review. Brazilian Journal of Plant Physiology, 18, 55–81.CrossRefGoogle Scholar
  22. Davis, A. P., Gole, T. W., Baena, S., & Moat, J. (2012). The impact of climate change on indigenous Arabica coffee (Coffea arabica): Predicting future trends and identifying priorities. PLoS ONE, 7, e47981.CrossRefGoogle Scholar
  23. Dias, A. S., Barreiro, M. G., Campos, P. S., Ramalho, J. C., & Lidon, F. C. (2010). Wheat cellular membrane thermotolerance under heat stress. Journal of Agronomy and Crop Science, 196, 100–108.CrossRefGoogle Scholar
  24. Dodd, I. C., Whalley, W. R., Ober, E. S., & Parry, M. A. J. (2011). Genetic and management approaches to boost UK wheat yields by ameliorating water deficits. Journal of Experimental Botany, 62, 5241–5248.CrossRefGoogle Scholar
  25. Drake, B. G., Gonzàlez-Meler, M. A., & Long, S. P. (1997). More efficient plants: A consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 48, 609–639.CrossRefGoogle Scholar
  26. ECDRP (European Commission Directorate-General Regional Policy). (2009). The climate change challenge for european regions—Regions 2020. Brussels.Google Scholar
  27. Finger, F. L., Santos, V. R., Barbosa, J. G., & Barros, R. S. (2006). Influence of temperature on respiration, ethylene production and longevity of Consolida ajacis inflorescences. Bragantia, 65, 363–368.CrossRefGoogle Scholar
  28. Fortunato, A., Lidon, F. C., Batista-Santos, P., Leitão, A. E., Pais, I. P., Ribeiro, A. I., et al. (2010). Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. Journal of Plant Physiology, 167, 333–342.CrossRefGoogle Scholar
  29. Gay, C., Estrada, F., Conde, C., Eakin, H., & Villers, L. (2006). Potential impacts of climate change on agriculture: A case of study of coffee production in Veracruz, Mexico. Climatic Change, 79, 259–288.CrossRefGoogle Scholar
  30. Ghini, R., Torre-Neto, A., Dentzien, A. F. M., Guerreiro-Filho, O., Lost, R., Patrício, F. R. A., et al. (2015). Coffee growth, pest and yield responses to free-air CO2 enrichment. Climatic Change, 132, 307–320.CrossRefGoogle Scholar
  31. ICO. (2014). World coffee trade (1963–2013): A review of the markets, challenges and opportunities facing the sector. ICC (International Coffee Council), 111–115 Rev. 1, 29 pp. Available online at: http://www.ico.org/show_news.asp?id=361. Accessed July 2016.
  32. Idso, S. B., & Kimball, B. A. (1997). Effects of long-term atmospheric CO2 enrichment on the growth and fruit production of sour orange trees. Global Change Biology, 3, 89–96.CrossRefGoogle Scholar
  33. IPCC. (2013). Climate change 2013: The physical science basis. summary for policymakers, Technical summary and frequent asked questions. In T. F. Stocker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley (Eds.), Part of the working group i contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 203). ISBN 978-92-9169-138-8.Google Scholar
  34. IPCC. (2014). Climate change 2014: Mitigation of climate change. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Contribution of working group iii to the fifth assessment report of the Intergovernmental Panel on climate change (p. 1435).Cambridge, UK: Cambridge University Press. ISBN 978-1-107-65481-5.Google Scholar
  35. Kaiser, W. M. (1987). Effect of water deficit on photosynthetic capacity. Physiologia Plantarum, 71, 142–149.CrossRefGoogle Scholar
  36. Kirschbaum, M. U. F. (2011). Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiology, 155, 117–124.CrossRefGoogle Scholar
  37. LaDeau, S. L., & Clark, J. S. (2001). Rising CO2 levels and the fecundity of forest trees. Science, 292, 95–98.CrossRefGoogle Scholar
  38. Luo, Y., Reynolds, J., Wang, Y., & Wolfe, D. (1999). A search for predictive understanding of plant responses to elevated [CO2]. Global Change Biology, 5, 143–156.CrossRefGoogle Scholar
  39. Magrach, A., & Ghazoul, J. (2015). Climate and pest-driven geographic shifts in global coffee production: Implications for forest cover, biodiversity and carbon storage. PLoS ONE, 10, e0133071.CrossRefGoogle Scholar
  40. Martinez, H. E. P., Clemente, J. M., Lacerda, J. S., Neves, Y. P., & Pedrosa, A. W. (2014). Nutrição mineral do cafeeiro e qualidade da bebida. Revista Ceres, 61, 838–848.CrossRefGoogle Scholar
  41. Martins, L. D., Eugenio, F. C., Rodrigues, W. N., Brinate, S. V. B., Colodetti, T. V., Amaral, J. F. T., et al. (2015). A bitter cup: The estimation of spatial distribution of carbon balance in Coffea spp. plantations reveals increased carbon footprint in tropical regions. Plant Soil Environment, 61, 544–552.Google Scholar
  42. Martins, L. D., Tomaz, M. A., Lidon, F. C., DaMatta, F. M., & Ramalho, J. C. (2014a). Combined effects of elevated [CO2] and high temperature on leaf mineral balance in Coffea spp. plants. Climatic Change, 126, 365–379.CrossRefGoogle Scholar
  43. Martins, M. Q., Fortunato, A. F., Rodrigues, W. P., Partelli, F. L., Campostrini, E., Lidon, F. C., et al. (2017). Selection and validation of reference genes for accurate RT-qPCR data normalization in Coffea spp. under a climate changes context of interacting elevated [CO2] and temperature. Frontiers in Plant Science, 8, art 307.Google Scholar
  44. Martins, M. Q., Rodrigues, W. P., Fortunato, A. S., Leitao, A. E., Rodrigues, A. P., Pais, I. P., et al. (2016). Protective response mechanisms to heat stress in interaction with high [CO2] conditions in Coffea spp. Frontiers in Plant Science, 7, art 947.Google Scholar
  45. Martins, S. V. C., Galmés, J., Cavatte, P. C., Pereira, L. F., Ventrella, M. C., & DaMatta, F. M. (2014b). Understanding the low photosynthetic rates of sun and shade coffee leaves: Bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis. PLoS ONE, 9, e95571.CrossRefGoogle Scholar
  46. Matos, M. C., Campos, P. S., Passarinho, J. A., Semedo, J. N., Marques, N. M., Ramalho, J. C., et al. (2010). Drought effect on photosynthetic activity, osmolyte accumulation and membrane integrity of two Cicer arietinum genotypes. Photosynthetica, 48, 303–312.CrossRefGoogle Scholar
  47. Moutinho-Pereira, J., Gonçalves, B., Bacelar, E., Cunha, J. B., Coutinho, J., & Correia, C. M. (2009). Effects of elevated CO2 on grapevine (Vitis vinifera L.): Physiological and yield attributes. Vitis, 48, 159–165.Google Scholar
  48. NDMC (The National Drought Mitigation Center). (2017). Drought Impact Reporter. www.drought.unl.edu. Accessed March 9, 2017.
  49. Ovalle-Rivera, O., Läderach, P., Bunn, C., Obersteiner, M., & Schroth, G. (2015). Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE, 10, e0124155.CrossRefGoogle Scholar
  50. Partelli, F. L., Batista-Santos, P., Scotti-Campos, P., Pais, I. P., Quantin, V. L., Vieira, H. D., et al. (2011). Characterization of the main lipid components of chloroplast membranes and cold induced changes in Coffea spp. Environmental and Experimental Botany, 74, 194–204.CrossRefGoogle Scholar
  51. Polley, H. W. (2002). Implications of atmospheric and climate change for crop yield. Crop Science, 42, 131–140.CrossRefGoogle Scholar
  52. Queiroz, C. G., Alonso, A., Mares-Guia, M., & Magalhães, A. C. (1998). Chilling induced changes in membrane fluidity and antioxidant enzyme activities in Coffea arabica L. roots. Biologia Plantarum, 41, 403–413.CrossRefGoogle Scholar
  53. Ramalho, J. C., Campos, P. S., Teixeira, M., & Nunes, M. A. (1998). Nitrogen dependent changes in antioxidant system and in fatty acid composition of chloroplast membranes from Coffea arabica L. plants submitted to high irradiance. Plant Science, 135, 115–124.CrossRefGoogle Scholar
  54. Ramalho, J. C., DaMatta, F. M., Rodrigues, A. P., Scotti-Campos, P., Pais, I., Batista-Santos, P., et al. (2014a). Cold impact and acclimation response of Coffea spp. plants. Theoretical and Experimental Plant Physiology, 26, 5–18.CrossRefGoogle Scholar
  55. Ramalho, J. C., Fortunato, A. S., Goulao, L. F., & Lidon, F. C. (2013a). Cold-induced changes in mineral content in Coffea spp. leaves—Identification of descriptors for tolerance assessment. Biologia Plantarum, 57, 495–506.CrossRefGoogle Scholar
  56. Ramalho, J. C., Pons, T., Groeneveld, H., Azinheira, H. G., & Nunes, M. A. (2000). Photosynthetic acclimation to high light conditions in mature leaves of Coffea arabica L.: Role of xanthophylls, quenching mechanisms and nitrogen nutrition. Australian Journal of Plant Physiology, 27, 43–51.CrossRefGoogle Scholar
  57. Ramalho, J. C., Rodrigues, A. P., Semedo, J. N., Pais, I. P., Martins, L. D., Simões-Costa, M. C., et al. (2013b). Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2]. PLoS ONE, 8, e82712.CrossRefGoogle Scholar
  58. Ramalho, J. C., Zlatev, Z. S., Leitão, A. E., Pais, I. P., Fortunato, A. S., & Lidon, F. C. (2014b). Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. Plant Biology, 16, 133–146.CrossRefGoogle Scholar
  59. Rodrigues, W. P., Martins, M. Q., Fortunato, A. S., Rodrigues, A. P., Semedo, J. N., Simoes-Costa, M. C., et al. (2016). Long-term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. Global Change Biology, 22, 415–431.CrossRefGoogle Scholar
  60. Ronchi C. P., & DaMatta F. M. (2007). Aspectos fisiológicos do café conilon. In R. G. Ferrão, A. F. A.Fonseca, S. M. Bragança, M. A. G. Ferrão, & L. H. De Muner (Eds.), Café Conilon (pp. 95–115) Vitória: Seag/Incaper.Google Scholar
  61. Scotti-Campos, P., Semedo, J. N., Pais, I., Oliveira, M., Passarinho, J., & Ramalho, J. C. (2014). Heat tolerance of Portuguese old bread wheat varieties. Emirates Journal of Food and Agriculture, 26, 170–179.CrossRefGoogle Scholar
  62. Taiz, L., & Zeiger, E. (2013). Fisiologia Vegetal. Porto Alegre, Brazil: Artmed.Google Scholar
  63. Thiec, D. L., Dixon, M., Loosveldt, P., & Garrec, J. P. (1995). Seasonal and annual variations of phosphorus, calcium, potassium and manganese contents in different cross-sections of Picea abies (L.) Karst. needles and Quercus rubra L. leaves exposed to elevated CO2. Trees, 10, 55–62.CrossRefGoogle Scholar
  64. Waller, J. M., Bigger, M., & Hillocks, R. J. (2007). Coffee pests, diseases and their management. In J. M. Waller, M. Bigger, & R. J. Hillocks (Eds.), World coffee production (pp. 17–40, Chapter 2) Egham, Surrey, BC: CAB International.Google Scholar
  65. Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1–14.CrossRefGoogle Scholar
  66. Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244–252.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • José Nobre Semedo
    • 1
    • 2
  • Weverton P. Rodrigues
    • 3
  • Danielly Dubberstein
    • 4
  • Madlles Q. Martins
    • 4
  • Lima D. Martins
    • 5
  • Isabel P. Pais
    • 1
  • Ana P. Rodrigues
    • 6
  • António E. Leitão
    • 2
    • 7
  • Fábio L. Partelli
    • 4
  • Eliemar Campostrini
    • 3
  • Marcelo A. Tomaz
    • 5
  • Fernando H. Reboredo
    • 2
  • Paula Scotti-Campos
    • 1
    • 2
  • Ana I. Ribeiro-Barros
    • 2
    • 7
  • Fernando C. Lidon
    • 2
  • Fábio M. DaMatta
    • 8
  • José C. Ramalho
    • 2
    • 7
  1. 1.Unidade de Investigação em Biotecnologia e Recursos Genéticos (UIBRG)Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV)OeirasPortugal
  2. 2.GeoBioTec, Dept. Ciências da Terra (DCT), Faculdade de Ciências e Tecnologia (FCT)Universidade NOVA de Lisboa (UNL)Monte de CaparicaPortugal
  3. 3.Setor Fisiologia VegetalCentro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense - Darcy Ribeiro (UENF)Campos dos GoitacazesBrazil
  4. 4.Dept. Ciências Agrárias e Biológicas (DCAB)Centro Universitário Norte do Espírito Santo (CEUNES), Universidade Federal Espírito Santo (UFES)São MateusBrazil
  5. 5.Centro de Ciências Agrárias e Engenharias (CCAE), Universidade Federal do Espírito Santo (UFES)AlegreBrazil
  6. 6.Forest Studies Center (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa)LisbonPortugal
  7. 7.Plant-Environment Interactions and Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food (LEAF)Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa)OeirasPortugal
  8. 8.Departamento de. Biologia VegetalUniversidade Federal Viçosa (UFV)ViçosaBrazil

Personalised recommendations