Advertisement

Is It Possible to Completely Adapt Agriculture Production to the Effects of Climate Variability and Change in Central Argentina? New Approaches in Face of New Challenges

  • Mónica B. Wehbe
  • Roberto A. Seiler
  • Marta G. Vinocur
  • Ivan E. Tarasconi
Chapter
Part of the Climate Change Management book series (CCM)

Abstract

The adaptation of agriculture has been a priority since the advent of studies on climate change at the end of the last century. Today agriculture faces two concurrent challenges: adapting to the impacts of climate variability and change and feeding a growing world population. But responses to these issues generally do not coincide with the goal of climate change mitigation at global scale and ecosystem sustainability efforts at the local scale. This is analyzed in this article through a case study on adaptation to droughts in one of the main agricultural areas of the world, central Pampas in Argentina. Results from the analysis show that current adaptation practices do not eliminate yield variability especially to climatic extremes. Therefore, extra measures for reducing the agricultural productivity gap is not always justified against the possible social and environmental costs of such actions, reinforcing the necessity for new approaches on the adaptation of agriculture to climate variability and change and to provide, at the same time, for healthy food and environments for humanity. Here, a focus on the resilience of the socio-ecological systems to climatic shocks is considered as complementary to more conventional adaptation practices when attempting to increase agricultural production but within the limits of the sustainable development goals.

Keywords

Agriculture Adaptations Climate change Droughts Resilience Socio-ecological systems 

References

  1. AIACC Final Report. (2006). Vulnerability and adaptation to climate variability and change: The case of farmers in Mexico and Argentina. Project No. LA29. Washington, DC, USA: The International START Secretariat.Google Scholar
  2. Antle, J. M., & Capalbo, S. M. (2010). Adaptation of agricultural and food systems to climate change: An economic and policy perspective. Applied Economic Perspectives and Policy, 32(3), 386–416.CrossRefGoogle Scholar
  3. Barros, V. (2008). Adaptation to climate trends: Lessons from the argentine experience. In Climatic Change and Adaptation (Chapter 17, p. 296). UK: Earthscan.Google Scholar
  4. Beddington, J., Asaduzzaman, M., Clark, M., Fernández, A. et al. (2012). Achieving food security in the face of climate change: Final report from the commission on sustainable agriculture and climate change. CGIAR research program on climate change, agriculture and food security (CCAFS), Copenhagen, Denmark. Available online at www.ccafs.cgiar.org/commission.
  5. Blarasín, M., & Cabrera. (2005). Agua subterránea y ambiente. Área de Promoción Científica de la Agencia Córdoba Ciencias S.E. Available at www.cba.gov.ar/wp-content/…/03/Agua+subterranea+y+ambiente.desbloqueado.pdf.
  6. Cabell, J. F., & Oelofse, M. (2012). An indicator framework for assessing agroecosystem resilience. Ecology and Society, 17(1), 18.CrossRefGoogle Scholar
  7. Calzada, J., & Corina, S. (2016). ¿Qué conviene sembrar: soja o maíz de segunda? Una pelea pareja. Bolsa de Comercio de Rosario, Informativo Semanal, No. 1781, Available at http://www.bcr.com.ar/Publicaciones/Informativo%20semanal/bcr2016_10_21.pdf.
  8. Carpenter, S. R., Booth, E. G., Gillon, S., Kucharik, C. J., Loheide, S., Mase, A. S., et al. (2015). Plausible futures of a social-ecological system: Yahara watershed, Wisconsin, USA. Ecology and Society, 20(2), 10.CrossRefGoogle Scholar
  9. CEPAL/FAO/IICA. (2011). Volatilidad de precios en los mercados agrícolas (2000–2010): implicaciones para América Latina y opciones de políticas. Boletín No. 1, p. 36.Google Scholar
  10. Eakin, H. C., & Wehbe, M. B. (2009). Linking local vulnerability to system sustainability in a resilience framework. Climate Change, 93(3–4), 355–377.CrossRefGoogle Scholar
  11. FAO. (2008). The state of food insecurity in the world 2008. High food prices and food security—Threats and opportunities (p. 56). Rome.Google Scholar
  12. FAO. (2010). “Climate smart” agriculture, policies, practices and financing for food security, adaptation and mitigation (p. 41). Rome, Italy: Food and Agriculture Organization of the United Nations.Google Scholar
  13. FAO, & DWFI. (2015). Yield gap analysis of field crops—Methods and case studies. In V. O. Sadras, K. G. G. Cassman, P. Grassini, A. J. Hall, W. G. M. Bastiaanssen, A. G. Laborte, A. E. Milne, G. Sileshi, & P. Steduto. FAO Water Reports No. 41, Rome, Italy.Google Scholar
  14. Fisher, M. A., Di Bella, C. M., & Jobbagy, E. G. (2012). Fire patterns in central semiarid Argentina. Journal of Arid Environment, 78, 161–168.CrossRefGoogle Scholar
  15. Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C., & Walker, B. (2002). Resilience and sustainable development: Building adaptive capacity in a world of transformations. Ambio, 31(5), 437–440.CrossRefGoogle Scholar
  16. Hansen, J., Sato, M., & Ruedy, R. (2012). Perception of climate change. PNAS E2415–E2423.Google Scholar
  17. INTA. (2011). PRECOP - Mayor valor agregado en origen. INTA - Ministerio de Agricultura, Ganadería y Pesca, Presidencia de la Nación.Google Scholar
  18. IPCC. (2014). Summary for policymakers. In: C. B. Field, V.R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 17–18). Cambridge, UK: Cambridge University Press.Google Scholar
  19. Lobell, D., Roberts, M. J., Schlenker, W., Braun, N., Braun, N., Little, B., et al. (2014). Greater sensitivity to drought accompanies Maize yield increase in the U.S. Midwest. Science, 344, 516–519.CrossRefGoogle Scholar
  20. McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Preprints, Eighth Conference on Applied Climatology (pp. 174–184). Anaheim, CA: American Meteorological Society.Google Scholar
  21. McKee, T. B., Doesken, N. J., & Kleist, J. (1995). Drought monitoring with multiple time scales. In Preprints, Ninth Conference on Applied Climatology (pp. 233–236). Dallas, TX: American Meteorological Society.Google Scholar
  22. Nelson, D. R. (2011). Adaptation and resilience: Responding to a changing climate. WIREs Climate Change, 2, 113–120.  https://doi.org/10.1002/wcc.91Vol.2.CrossRefGoogle Scholar
  23. O’Brien, K. L., & Leichenko, R. M. (2000). Double exposure: Assessing the impacts of climate change within the context of economic globalization. Global Environmental Change, 10, 221–232.CrossRefGoogle Scholar
  24. Obschatko, E. (2013). El sector agroalimentario argentino como motor del crecimiento. In Alimentar el futuro. Argentina proveedora de Alimentos para el mundo (pp. 54–67). Buenos Aires: Cámara de Comercio Argentino-Holandesa.Google Scholar
  25. OCDE/FAO. (2011). OCDE-FAO Perspectivas Agrícolas 2011–2020. OECD Publishing y FAO. http://dx.doi.org/10.1787/agr_outlook-2011-es.
  26. OECD. (2013). Policies for bioplastics in the context of a bioeconomy. OECD Science, Technology and Industry Policy Papers, No. 10, OECD Publishing.Google Scholar
  27. Penalba, O. C., & Rivera, J. A. (2013). Future changes in drought characteristics over Southern South America projected by a CMIP5 Multi-model Ensemble. American Journal of Climate Change, 2, 173–182.CrossRefGoogle Scholar
  28. Reidsma, P., & Ewert, F. (2008). Regional farm diversity can reduce vulnerability of food production to climate change. Ecology and Society, 13(1), 38.CrossRefGoogle Scholar
  29. Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., & Gerten, D. (2009). Future water availability for global food production: The potential of green water for increasing resilience to global change. Water Resources Research, 45, W00A12,  https://doi.org/10.1029/2007wr006767.
  30. Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., et al. (2017). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 1–14. (First Online) ISSN: 0044-7447.Google Scholar
  31. Seiler, R. A. (2012). La sequía como fenómeno climático. Presentación realizada en el marco del “Seminario: Sequía 2011–2012, Un análisis multidisciplinario”. Res CD. No. 036/2012 (April 03, 2012), Universidad Nacional de Río Cuarto.Google Scholar
  32. Seiler, R. A., Hayes, M., & Bressan, L. (2002). Using the standardized precipitation index for flood risk monitoring. International Journal of Climatology, 22, 1365–1376.CrossRefGoogle Scholar
  33. SIIA. (2014). Sistema Integrado de Información Agropecuaria. Secretaría de Agricultura, Ganadería y Pesca. Presidencia de la Nación. http://www.siia.gov.ar/.
  34. Vergara, W., Ríos, A. R., Trapido, P., & Malarín, H. (2014). Agricultura y Clima Futuro en América Latina y el Caribe: Impactos Sistémicos y Posibles Respuestas. Banco Interamericano de Desarrollo, Documento de debate; No. IDB-DP-329. Available at www.iadb.org/cambioclimatico.
  35. Viglizzo, E. F., Frank, F. C., Carreño, L. V., Jobbagy, E., Pereyra, H., Clatt, J., et al. (2011). Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Global Change Biology, 17, 959–973.CrossRefGoogle Scholar
  36. Walker, B. H., Gunderson, L. H., Kinzig, A. P., Folke, C., Carpenter, S. R., & Schultz, L. (2006). A handful of heuristics and some propositions for understanding resilience in social-ecological systems. Ecology and Society, 11(1), 13.CrossRefGoogle Scholar
  37. Wehbe, M. B. (2014). Needs for institutional transformations for managing freshwater and agriculture in South of Cordoba (Argentina). In Third International Science and Policy Conference on the Resilience of Social & Ecological Systems:Resilience and Development: Mobilizing for Transformation”. Montpellier, France, 4–8 de Mayo.Google Scholar
  38. Wehbe, M. B., Bosch, E. A., Granda, J. A., & Tarasconi, I. E. (2011). Riesgo sequía, impactos y manejo de riesgo en la agricultura del Sur de Córdoba. III Congreso Regional de Economía Agraria-XVI Congreso de Economistas Agrarios de Chile-XLII Reunión Anual Asociación Argentina de Economía Agraria, Valdivia, Chile, 9–11 Noviembre.Google Scholar
  39. Wehbe, M. B., Eakin, H.C., Seiler, R. A., et al. (2008). Local perspectives on adaptation to climate change. Lessons from Mexico and Argentina. In Climatic Change and Adaptation (Chapter 18, 315–331) Earthscan, UK.Google Scholar
  40. Wehbe, M. B., & Maurutto, M. C. (2005). Participatory local development: Importance of incorporating agriculture producers into public policy formulations towards reducing their vulnerability to climate variability and change. 6th Open Meeting of the Human Dimensions of Global Environmental Change Research Community. BONN.Google Scholar
  41. WMO. (2012). Standardized precipitation index user guide. WMO-No: 1090. p. 24.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mónica B. Wehbe
    • 1
  • Roberto A. Seiler
    • 1
  • Marta G. Vinocur
    • 1
  • Ivan E. Tarasconi
    • 1
  1. 1.National University of Río CuartoCórdobaArgentina

Personalised recommendations