Skip to main content

Preparing Teachers for Teaching Probability Through Problem Solving

  • Chapter
  • First Online:
Teaching and Learning Stochastics

Part of the book series: ICME-13 Monographs ((ICME13Mo))

Abstract

In this paper we introduce the idea of solving problems by simulation with didactical intention. Based on this idea, we analyse the way we prepare the teachers to teach solving probability problems by simulation, in distinguishing whether the teaching is offered to prospective elementary teachers or secondary school teachers. The process of solving probability problems is seen as an inquiry process, which uses simulation as a resolution method with heuristic content, so that the preparation of teacher is then based on this approach. Therefore, prospective teachers should have the opportunities to learn about probability problems, about the process of solving probability problems, and about students’ resolution process by observing the work of other classmates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.

    Google Scholar 

  • Bernoulli, J. (1987). Ars conjectandi- 4ème partie. Rouen: IREM. (Original work published in 1713).

    Google Scholar 

  • Borrás, E. (1996). Algunos modelos de simulación aleatoria y su aplicación a la enseñanza del azar (Some random simulation models and their application to the teaching of chance). Unpublished Ph.D. Universitat Politècnica de Catalunya. Barcelona, Spain.

    Google Scholar 

  • Borovcnik, M., & Kapadia, R. (2014a). A historical and philosophical perspective on probability. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives. (pp. 7–34). Berlin: Springer.

    Google Scholar 

  • Borovcnik, M., & Kapadia, R. (2014b). From puzzles and paradoxes to concepts in probability. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 35–73). Berlin: Springer.

    Google Scholar 

  • Chaput, B., Girard, J. C., & Henry, M. (2011). Frequentist approach: modelling and simulation in statistics and probability teaching. In C. Batanero, G. Burril, & C. Reading (Eds.), Teaching statistics in school mathematics-challenges for teaching and teacher education. A Joint ICMI/IASE study (pp. 85–95). New York: Springer.

    Google Scholar 

  • Chernoff, E., & Sriraman, B. (2014). Probabilistic thinking: Presenting plural perspectives. Berlin: Springer.

    Google Scholar 

  • DeGroot, M. H., & Schervish, M. J. (2012). Probability and statistics (4th ed.). Menlo Park, CA: Addison Wesley.

    Google Scholar 

  • Eichler, A., & Vogel, M. (2014). Three approaches for modelling situations with randomness. In E. J. Chernoff, & B. Sriraman, Probabilistic thinking: Presenting plural perspectives. (pp. 75–99). Berlin: Springer.

    Google Scholar 

  • Engel, A (1975). The probabilistic abacus. Educational Studies in Mathematics, 6(1), 1–22.

    Google Scholar 

  • Gordon, H. (2012). Discrete probability (2nd ed.). New York: Springer.

    Google Scholar 

  • Huerta, M. P. (2015). La resolución de problemas de probabilidad con intención didáctica en la formación de maestros y profesores de matemáticas. (The probability problem solving with didactical intention in preparing teachers and mathematics teachers). In C. Fernández, M. Molina, & N. Planas (Eds.), Investigación en Educación Matemática XIX (pp. 105–119). Alicante, Spain: Spanish Society for Research in Mathematics Education.

    Google Scholar 

  • Huerta, M. P., Cerdán, F., Lonjedo, M. A., & Edo, P. (2011). Assessing difficulties of conditional probability problems. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (pp. 807–817). Rzeszów, Poland: European Society for Research in Mathematics Education.

    Google Scholar 

  • Jacobs, V. L., Lamb, L. L. C., & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education 41(2), 169–202.

    Google Scholar 

  • Kilpatrick, J. (2016). Reformulating: Approaching mathematical problem solving as inquiry. In P. Felmer; E. Pehkonen, & J. Kilpatrick (2016), Posing and solving mathematical problems (pp. 69–81). New York: Springer.

    Google Scholar 

  • Leonng, Y. H., Tay E. G., Toh, T. L., Quek, K. S., Toh, P. C., & Dindyal, J. (2016). Infusing mathematical problem solving in the mathematics curriculum: replacement units. In P. Felmer; E. Pehkonen, & J. Kilpatrick (2016), Posing and solving mathematical problems (pp. 309–325). New York: Springer.

    Google Scholar 

  • Maaβ, K., & Doorman, M. (2013). A model for a widespread implementation of inquiry-based learning. ZDM—International Journal on Mathematics Education, 45(6), 887–899.

    Google Scholar 

  • Martínez, M. L., & Huerta, M. P. (2015). Diseño e implementación de una situación de incertidumbre en una clase de educación infantil (Design and implementation of an uncertainty situation in a Kindergarten class). Edma 0-6: Educación matemática en la Infancia 4(1), 24–36.

    Google Scholar 

  • Maxara, C., & Biehler, R. (2006). Students’ simulation and modelling competence after a computer-intensive elementary course in statistics and probability. In A. Rossman, & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. Salvador de Bahia, Brazil: International Statistical Institute. https://iase-web.org/documents/papers/icots7/7C1_MAXA.pdf Accessed April 14, 2017.

  • Pfannkuch, M., & Ziedins, I. (2014). A modelling perspective on probability. In E. J. Chernoff, & B. Sriraman, Probabilistic thinking: Presenting plural perspectives (pp. 101–115). Berlin: Springer.

    Google Scholar 

  • Polya, G. (1957). How to solve it (2nd Edition). New Jersey: Princeton.

    Google Scholar 

  • Puig, L. (1996). Elementos de resolución de problemas (Elements of problem solving). Granada, Spain: Comares.

    Google Scholar 

  • Rossman, A. (2013). Interview with Mike Shaughnessy. Journal of Statistics Education, 21(1), 1–27.

    Google Scholar 

  • Santos, M. (2012). El papel de la resolución de problemas en el desarrollo del conocimiento matemático de los profesores para la enseñanza (The role of problem solving in developing teachers’ mathematics knowledge for teaching). Cuadernos de Investigación y Formación en Educación Matemática 7(10), 151–163.

    Google Scholar 

  • Shaughnessy, M. (1983). The psychology of inference and the teaching of probability and statistics: Two sides of the same coin? In R. W. Scholz (Ed.), Decision making under uncertainty (pp. 325–350). Amsterdam: Elsevier.

    Google Scholar 

  • Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections and directions. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 465–494). New York: MacMillan.

    Google Scholar 

  • Shulman, L. S. (1986). Those who understand. Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Google Scholar 

  • Siñeriz, L., & Puig, L. (2006). Un modelo de competencia para la resolución de problemas de construcción con regla y compás (A model of competence for solving problems of constructions with rule and compass). In J. Aymerich, & S. Macario, (Eds.), Matemáticas para el siglo XXI (pp. 323–332). Castellón de la Plana, España: Publicacions de la Universitat Jaume I.

    Google Scholar 

  • Ulam, S. (1951). On the Monte Carlo method. Proceedings of a Second Symposium on Large-scale digital Calculating Machinery (pp. 207–212). Cambridge: Harvard Academic Press.

    Google Scholar 

  • Von Newmann, J. (1951). Various techniques used in connection with random digits, Monte Carlo method. National Bureau of Standards Applied Math. Series 12, 36–38.

    Google Scholar 

  • Wilson, P. S., & Heid, M. K. (Eds.). (2010). Framework for mathematical proficiency for teaching. Athens, GA: Mid-Atlantic Center for Mathematics Teaching and Learning. http://jwilson.coe.uga.edu/Situations/Framework%20Folder/111021MPT%20Framework.pdf. Accessed 15 April, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. Huerta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huerta, P.M. (2018). Preparing Teachers for Teaching Probability Through Problem Solving. In: Batanero, C., Chernoff, E. (eds) Teaching and Learning Stochastics. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-72871-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72871-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72870-4

  • Online ISBN: 978-3-319-72871-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics