The Anatomical, Hormonal and Neurochemical Changes that Occur During Brain Development in Adolescents and Young Adults

Chapter

Abstract

Adolescent development used to be regarded as determined solely by changes in pubertal hormones and social expectations occurring in an unchanging brain. However, over the last 15 years, it has been recognised that the adolescent brain changes anatomically in fundamental ways, as striking as the changes over the first few years of life. Also the period of adolescent brain change lasts longer than that of puberty; adolescent brain maturation extends from 11 to 25 years of age.

New imaging techniques show unequivocal changes in the white and grey matter which take place between 11 and 25 years of age. There is increased connectivity between brain regions and increased dopaminergic activity in the prefrontal cortices, the basal ganglia and limbic system and the pathways linking them. The brain is dynamic, with some areas developing faster and becoming more dominant until other areas catch up. In this chapter we describe new knowledge about changes in brain morphology, pubertal hormones and neurochemistry during adolescence. In the next chapter, we link these changes to some of the behavioural manifestations of adolescence.

Keywords

Adolescent brain Young adult brain Anatomy Hormones Neurotransmitters 

References

  1. 1.
    Lebel C, Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci. 2011;31(30):10937–47.PubMedCrossRefGoogle Scholar
  2. 2.
    Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006;30(6):718–29. PubMed PMID: WOS:000241208800002. English.PubMedCrossRefGoogle Scholar
  3. 3.
    Casey BJ, Jones RM, Hare TA. The adolescent brain. Ann N Y Acad Sci. 2008;1124:111–26. PubMed PMID: 18400927. Pubmed Central PMCID: 2475802.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Giedd JN. The teen brain: insights from neuroimaging. J Adolesc Health. 2008;42(4):335–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Giedd JN, Castellanos FX, Rajapakse JC, Kaysen D, Vaituzis AC, Vauss YC, et al. Cerebral MRI of human brain development—ages 4–18. Biol Psychiatry. 1995;37:657.CrossRefGoogle Scholar
  6. 6.
    Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. Mapping cortical change across the human life span. Nat Neurosci. 2003;6(3):309–15. PubMed PMID: 12548289.PubMedCrossRefGoogle Scholar
  7. 7.
    Hasan KM, Sankar A, Halphen C, Kramer LA, Brandt ME, Juranek J, et al. Development and organization of the human brain tissue compartments across the lifespan using diffusion tensor imaging. Neuroreport. 2007;18(16):1735–9. PubMed PMID: WOS:000250329300020. English.PubMedCrossRefGoogle Scholar
  8. 8.
    Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2(10):861–3. PubMed PMID: 10491603.PubMedCrossRefGoogle Scholar
  9. 9.
    Blakemore SJ, Burnett S, Dahl RE. The role of puberty in the developing adolescent brain. Hum Brain Mapp. 2010;31(6):926–33. PubMed PMID: 20496383. Pubmed Central PMCID: 3410522.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Schulz KM, Sisk CL. The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development. Neurosci Biobehav Rev. 2016;70:148–58. PubMed PMID: 27497718. Pubmed Central PMCID: PMC5074860.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Neufang S, Specht K, Hausmann M, Gunturkun O, Herpertz-Dahlmann B, Fink GR, et al. Sex differences and the impact of steroid hormones on the developing human brain. Cereb Cortex. 2009;19(2):464–73. PubMed PMID: WOS:000262518800021. English.PubMedCrossRefGoogle Scholar
  12. 12.
    Herting MM, Maxwell EC, Irvine C, Nagel BJ. The impact of sex, puberty, and hormones on white matter microstructure in adolescents. Cereb Cortex. 2012;22(9):1979–92. PubMed PMID: 22002939. Pubmed Central PMCID: PMC3412439.PubMedCrossRefGoogle Scholar
  13. 13.
    Wahlstrom D, Collins P, White T, Luciana M. Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn. 2010;72(1):146–59. PubMed PMID: 19944514. Pubmed Central PMCID: PMC2815132.PubMedCrossRefGoogle Scholar
  14. 14.
    Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev. 1998;28(3):309–69. PubMed PMID: WOS:000078202000003. English.PubMedCrossRefGoogle Scholar
  15. 15.
    Andersen SL, Thompson AP, Krenzel E, Teicher MH. Pubertal changes in gonadal hormones do not underlie adolescent dopamine receptor overproduction. Psychoneuroendocrinology. 2002;27(6):683–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Braams BR, van Duijvenvoorde AC, Peper JS, Crone EA. Longitudinal changes in adolescent risk-taking: a comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior. J Neurosci. 2015;35(18):7226–38. PubMed PMID: 25948271.PubMedCrossRefGoogle Scholar
  17. 17.
    Insel TR, Fernald RD. How the brain processes social information: searching for the social brain. Annu Rev Neurosci. 2004;27:697–722. PubMed PMID: 15217348.PubMedCrossRefGoogle Scholar
  18. 18.
    Sannino S, Chini B, Grinevich V. Lifespan oxytocin signaling: maturation, flexibility, and stability in newborn, adolescent, and aged brain. Dev Neurobiol. 2017;77(2):158–68. PubMed PMID: 27603523.PubMedCrossRefGoogle Scholar
  19. 19.
    Chibbar R, Toma JG, Mitchell BF, Miller FD. Regulation of neural oxytocin gene expression by gonadal steroids in pubertal rats. Mol Endocrinol. 1990;4(12):2030–8. PubMed PMID: 2082196.PubMedCrossRefGoogle Scholar
  20. 20.
    Insel T, Young L, Witt D, Crews D. Gonadal steroids have paradoxical effects on brain oxytocin receptors. J Neuroendocrinol. 1993;27:697–722.Google Scholar
  21. 21.
    Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci. 2005;25(49):11489–93. PubMed PMID: 16339042.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee TT, Gorzalka BB. Evidence for a role of adolescent Endocannabinoid signaling in regulating HPA Axis stress Responsivity and emotional behavior development. Int Rev Neurobiol. 2015;125:49–84. PubMed PMID: 26638764.PubMedCrossRefGoogle Scholar
  23. 23.
    Vanderschuren LJ, Achterberg EJ, Trezza V. The neurobiology of social play and its rewarding value in rats. Neurosci Biobehav Rev. 2016;70:86–105. PubMed PMID: 27587003. Pubmed Central PMCID: PMC5074863.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Health and SocietyNewcastle UniversityNewcastleUK
  2. 2.Northumbria Healthcare NHS Foundation TrustNorth ShieldsUK

Personalised recommendations