Physics of Wind Parks

  • Stefan Emeis
Part of the Green Energy and Technology book series (GREEN)


The assessment of meteorological conditions in wind parks needs special treatment because here the flow approaching most of the turbines in the park interior is no longer undisturbed. Wakes produced by upwind turbines can massively influence downwind turbines.


  1. Barthelmie R.J., L.E. Jensen: Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy 13, 573–586 (2010)Google Scholar
  2. Barthelmie, R.J., L. Folkerts, F.T. Ormel, P. Sanderhoff, P.J. Eecen, O. Stobbe, N.M. Nielsen: Offshore Wind Turbine Wakes Measured by Sodar. J. Atmos. Oceanogr. Technol. 20, 466–477 (2003)Google Scholar
  3. Barthelmie, R.J., S. Pryor, S. Frandsen, S. Larsen: Analytical Modelling of Large Wind Farm Clusters. Poster, Proc. EAWE 2004 Delft (2004). (available from:
  4. Barthelmie, R., Hansen O.F., Enevoldsen K., Højstrup J., Frandsen S., Pryor S., Larsen S.E., Motta M., and Sanderhoff P.: Ten Years of Meteorological Measurements for Offshore Wind Farms. J. Sol. Energy Eng. 127, 170–176 (2005)Google Scholar
  5. Barthelmie, R., Frandsen, S.T., Rethore, P.E., Jensen, L.: Analysis of atmospheric impacts on the development of wind turbine wakes at the Nysted wind farm. Proc. Eur. Offshore Wind Conf. 2007, Berlin 4.-6.12.2007 (2007)Google Scholar
  6. BDEW: Analyse und Bewertung von Möglichkeiten zur Weiterentwicklung des Regelenergiemarktes Strom. Grobkonzept—final. BDEW, Berlin (2015)Google Scholar
  7. Boettcher, M., P. Hoffmann, H.-J. Lenhart, K.H. Schlünzen, R. Schoetter: Influence of large offshore wind farms on North German climate. Meteorol. Z., 24, 465–480 (2015)Google Scholar
  8. Bossanyi, E.A., Maclean C., Whittle G.E., Dunn P.D., Lipman N.H., Musgrove P.J.: The Efficiency of Wind Turbine Clusters. Proc. Third Intern. Symp. Wind Energy Systems, Lyngby (DK), August 26–29, 1980, 401–416 (1980)Google Scholar
  9. Christiansen, M.B., Hasager, C.B.: Wake effects of large offshore wind farms identified from satellite SAR. Rem. Sens. Environ. 98, 251–268 (2005)Google Scholar
  10. Crespo, A., Hernandez, J., Frandsen, S.: Survey of Modelling Methods for Wind Turbine Wakes and Wind Farms. Wind Energy 2, 1–24 (1999)Google Scholar
  11. Cutler, N., M. Kay, K. Jacka, T.S. Nielsen: Detecting, Categorizing and Forecasting Large Ramps in Wind Farm Power Output Using Meteorological Observations and WPPT. Wind Energy, 10, 453–470 (2007)Google Scholar
  12. Cutululis, N.A., N.K. Detlefsen, P.E. Sørensen: Offshore wind power prediction in critical weather conditions. 10th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Farms, 25–26 Oct 2011, Aarhus (DK). Available from: objects/orbit:71861/datastreams/file_6295429/content (2012)
  13. Dotzek, N., S. Emeis, C. Lefebvre, J. Gerpott: Waterspouts over the North and Baltic Seas: Observations and climatology, prediction and reporting. Meteorol. Z. 19, 115–129 (2010)Google Scholar
  14. Dotzek, N.: An updated estimate of tornado occurrence in Europe.—Atmos. Res. 67–68, 153–161 (2003)Google Scholar
  15. DuPont, B., Cagan, J., & Moriarty, P. An advanced modeling system for optimization of wind farm layout and wind turbine sizing using a multi-level extended pattern search algorithm. Energy, 106, 802–814 (2016)Google Scholar
  16. Elliot, D.L.: Status of wake and array loss research. Report PNL-SA–19978, Pacific Northwest Laboratory, September 1991, 17 pp. (1991) (available from:
  17. Elliot, D.L., J.C. Barnard: Observations of Wind Turbine Wakes and Surface Roughness Effects on Wind Flow Variability. Solar Energy, 45, 265–283 (1990)Google Scholar
  18. Emeis, S.: A simple analytical wind park model considering atmospheric stability. Wind Energy 13, 459–469 (2010)Google Scholar
  19. Emeis, S., S. Frandsen: Reduction of Horizontal Wind Speed in a Boundary Layer with Obstacles. Bound.-Lay. Meteorol. 64, 297–305 (1993)Google Scholar
  20. Emeis, S., S. Siedersleben, A. Lampert, A. Platis, J. Bange, B. Djath, J. Schulz-Stellenfleth, T. Neumann: Exploring the wakes of large offshore wind farms. Journal of Physics: Conference Series, 753, 092014 (11 pp.) (2016)Google Scholar
  21. EWEA (Eds.): Delivering Offshore Wind Power in Europe.—Report, European Wind Energy Association, Brussels, 32 pp. (2007) [Available at]
  22. Feng, J., W.Z. Sheng: The Science of Making Torque from Wind 2012, IOP Publishing Journal of Physics: Conference Series 555 (2014) 012035, (2012)
  23. Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad: Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model. Mon. Wea. Rev., 140, 3017–3038 (2012)Google Scholar
  24. Frandsen, S.: On the Wind Speed Reduction in the Center of Large Cluster of Wind Turbines. J. Wind Eng. Ind. Aerodyn. 39, 251–265 (1992)Google Scholar
  25. Frandsen, S.: Turbulence and turbulence generated structural loading in wind turbine clusters. Risø-R-1188(EN), 130 pp. (2007)Google Scholar
  26. Frandsen, S.T., Barthelmie, R.J., Pryor, S.C., Rathmann, O., Larsen, S., Højstrup, J., Thøgersen, M.: Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9, 39–53 (2006)Google Scholar
  27. Frandsen, S., Jørgensen, H.E., Barthelmie, R., Rathmann, O., Badger, J., Hansen, K., Ott, S., Rethore, P.E., Larsen, S.E., Jensen, L.E.: The making of a second-generation wind farm efficiency model-complex. Wind Energy 12, 431–444 (2009)Google Scholar
  28. Göçmen, T., P. van der Laan, P.-E. Réthoré, A. Peña Diaz, G.Chr. Larsen, S. Ott: Wind turbine wake models developed at the Technical University of Denmark: A review. Renewable and Sustainable Energy Reviews. 60, 752–769 (2016)Google Scholar
  29. Jensen, N.O.: A Note on Wind Generator Interaction. Risø-M-2411, Risø Natl. Lab., Roskilde (DK), 16 pp. (1983) (Available from
  30. Jimenez, A., A. Crespo, E. Migoya, J. Garcia: Advances in large-eddy simulation of a wind turbine wake. J. Phys. Conf. Ser., 75, 012041.
  31. Koschmieder, H.: Über Böen und Tromben (On straight-line winds and tornadoes). Die Naturwiss. 34, 203–211, 235–238 (1946) [In German]Google Scholar
  32. Lissaman, P.B.S.: Energy Effectiveness of arbitrary arrays of wind turbines. AIAA paper 79–0114 (1979)Google Scholar
  33. Magnusson, M.: Near-wake behaviour of wind turbines. J. Wind Eng. Ind. Aerodyn. 80, 147–167 (1999)Google Scholar
  34. Manwell, J.F., J.G. McGowan, A.L. Rogers: Wind Energy Explained: Theory, Design and Application. 2nd edition. John Wiley & Sons, Chichester. 689 pp. (2010)Google Scholar
  35. Newman, B.G.: The spacing of wind turbines in large arrays. J. Energy Conversion 16, 169–171 (1977)Google Scholar
  36. Nygaard, N.G.: Wakes in very large wind farms and the effect of neighbouring wind farms. J. Phys. Conf. Ser., 524, 012162 (2014)Google Scholar
  37. Peña, A., O. Rathmann: Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient. Wind Energ. 17, 1269–1285 (2014)Google Scholar
  38. Platis, A., S.K. Siedersleben, J. Bange, A. Lampert,, K. Bärfuss,, R. Hankers, B. Canadillas, R. Foreman, J. Schulz-Stellenfleth, B. Djath, T. Neumann, S. Emeis: First in situ evidence of wakes in the far field behind offshore wind farms. Scientific Reports, 8, 2163 (2018)Google Scholar
  39. Quarton, D.C.: Characterization of wind turbine wake turbulence and its implications on wind farm spacing. Final Report ETSU WN 5096, Department of Energy of the UK. Garrad-Hassan Contract (1989)Google Scholar
  40. Rodrigues, S., P. Bauer, P.A.N. Bosman: Multi-objective optimization of wind farm layouts—Complexity, constraint handling and scalability. Renew. Sust. Energ. Rev., 65, 587–609 (2016)Google Scholar
  41. Siedersleben, S.K., A. Platis, J.K. Lundquist, A. Lampert, K. Bärfuss, B. Canadillas, B. Djath, J. Schulz-Stellenfleth, T. Neumann, J. Bange, S. Emeis: Evaluation of a Wind Farm Parametrization for Mesoscale Atmospheric 2 Flow Models with Aircraft Measurements. Meteorol. Z., submitted (2018)Google Scholar
  42. Skamarock, W. C., and Coauthors: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475 + STR, 113 pp., doi: (2008)
  43. Smith, R.B.: Gravity wave effects on wind farm efficiency. Wind Energy, 13, 449–458 (2010)Google Scholar
  44. Steinfeld, G., Tambke, J., Peinke, J., Heinemann, D.: Application of a large-eddy simulation model to the analysis of flow conditions in offshore wind farms. Geophys. Res. Abstr. 12, EGU2010-8320 (2010)Google Scholar
  45. Stevens, R. J., Martínez-Tossas, L. A., Meneveau, C. : Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments. Renewable Energy, 116, 470–478 (2018)Google Scholar
  46. Thom, H.C.S.: Tornado probabilities.—Mon. Wea. Rev. 91, 730–736 (1963)Google Scholar
  47. Thomsen, K., P. Sørensen: Fatigue loads for wind turbines operating in wakes. Journal of Wind Engineering and Industrial Aerodynamics, 80, 121–136 (1999)Google Scholar
  48. Troen, I., E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, Denmark. 656 pp. (1989)Google Scholar
  49. Troldborg, N., J.N. Sørensen, R. Mikkelsen: Numerical simulations of wake characteristics of a wind turbine in uniform inflow. Wind Energy 13, 86–99 (2010)Google Scholar
  50. Vermeer, L.J., J.N. Sørensen, A. Crespo: Wind turbine wake aerodynamics. Progr. Aerospace Sci. 39, 467–510 (2003)Google Scholar
  51. Wu, Y.T., F. Porté-Agel : Simulation of turbulent flow inside and above wind farms: model validation and layout effects. Bound-Lay. Meteorol., 146, 181–205 (2013)Google Scholar
  52. Wussow, S., L. Sitzki, T. Hahm: 3D-simulations of the turbulent wake behind a wind turbine. J. Phys. Conf. Ser., 75, 012033, (2007)
  53. Xia G., L. Zhou: Detecting Wind Farm Impacts on Local Vegetation Growth in Texas and Illinois Using MODIS Vegetation Greenness Measurements. Rem. Sens., 9, 698 (16 pp.) (2017)Google Scholar
  54. Xia G., L. Zhou, J.M. Freedman, S.B. Roy, R.A. Harris, M.C. Cervarich: A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Climate Dyn, 1–18 (2015)Google Scholar
  55. Zhou L., Y. Tian, R.S. Baidya, C. Thorncroft, L.F. Bosart, Y. Hu: Impacts of wind farms on land surface temperature. Nat. Clim. Change, 2, 539–543 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Meteorologie und KlimaforschungKarlsruher Institut für TechnologieGarmisch-PartenkirchenGermany

Personalised recommendations