Winds in Complex Terrain

  • Stefan Emeis
Part of the Green Energy and Technology book series (GREEN)


More and more onshore wind turbines are built away from flat regions near the coasts in complex (i.e. hilly or mountainous) terrain. The most favourite sites in complex terrain are at elevated positions such as hilltops. But sites in complex terrain also bear risks. In Japan, e.g. 1516 wind turbine accidents have been recorded between year 2004 and 2012, and 84% of them were for turbines in complex terrains. The longest downtime was associated with damage to main shafts or bearings with an average downtime of 5.7 months. Careful micrositing in complex terrains can prevent these accidents from happening (Watanabe and Uchida in Wind Eng 39:349–368, 2015). Therefore, this chapter introduces a few of the main flow features which influence wind energy yields in complex terrain.


  1. Allnoch, N.: Windkraftnutzung im nordwestdeutschen Binnenland: Ein System zur Standortbewertung für Windkraftanlagen. Geographische Kommission für Westfalen, Münster, ARDEY-Verlag, 160 pp. (1992).Google Scholar
  2. Anderson P.S., Ladkin R.S., Renfrew I.A.: An Autonomous Doppler Sodar Wind Profiling System. J. Atmos. Oceanic Technol. 22, 1309–1325 (2005).Google Scholar
  3. Astley, R.J.: A Finite Element Frozen Vorticity Solution for Two-Dimensional Wind Flow over Hills. 6th Australasian Conf. on Hydraulics and Fluid Mechanics, Adelaide, Australia, 443–446 (1977).Google Scholar
  4. Atkinson B.W.: Meso-scale Atmospheric Circulations. Academic Press, London etc., 495 pp. (1981).Google Scholar
  5. Barthelmie, R. J., Wang, H., Doubrawa, P., Giroux, G., Pryor, S. C.: Effects of an escarpment on flow parameters of relevance to wind turbines. Wind Energy, 19(12), 2271–2286 (2016).Google Scholar
  6. Bowen, A.J.: Full Scale Measurements of the Atmospheric Turbulence over Two Escarpments. In: J.E. Cermak (ed.), Wind Engineering: Proc. 5th Internat. Conf., Fort Collins, Pergamon, 161–172 (1979).Google Scholar
  7. Bowen, A.J., D. Lindley,: A Wind-Tunnel Investigation of the Wind Speed and Turbulence Characteristics Close to the Ground over Various Escarpment Shapes. Bound.-Layer Meteorol. 12, 259–271 (1977).Google Scholar
  8. Bradley, E. F.: The Influence of Thermal Stability and Angle of Incidence on the Acceleration of Wind up a Slope. J. Wind Eng. Indust. Aerodynam. 15, 231–242 (1983).Google Scholar
  9. Caccia, J.-L., Guénard, V., Benech, B., Campistron, B., Drobinski, P.: Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers. Ann. Geophysicae 22, 3927–3936 (2004).Google Scholar
  10. Defant, F.: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Meteorol. Geophys. Bioklimatol. A 1, 421–450 (1949).Google Scholar
  11. Emeis, S.: Vertical variation of frequency distributions of wind speed in and above the surface layer observed by sodar. Meteorol. Z. 10, 141–149 (2001).Google Scholar
  12. Emeis, S., H.P. Frank, F. Fiedler: Modification of air flow over an escarpment—Results from the Hjardemal experiment. Bound.-Lay. Meteorol. 74, 131–161. (1995).Google Scholar
  13. Finnigan, J.J., S.E. Belcher: Flow over a hill covered with a plant canopy. Quart. J. Roy. Meteor. Soc. 130, 1–29 (2004).Google Scholar
  14. Founda, D., M. Tombrou, D.P. Lalas, D.N. Asimakopoulos: Some measurements of turbulence characteristics over complex terrain. Bound.-Lay. Meteorol. 83, 221–245 (1997).Google Scholar
  15. Frank, H., K. Heldt, S. Emeis, F. Fiedler: Flow over an Embankment: Speed-Up and Pressure Perturbation. Bound.-Lay. Meteorol. 63, 163–182 (1993).Google Scholar
  16. Heimann, D., De Franceschi, M., Emeis, S., Lercher, P., Seibert, P. (Eds): Air pollution, traffic noise and related health effects in the Alpine space—a guide for authorities and consulters. ALPNAP comprehensive report. Università degli Studi di Trento, Trento, 335 pp. (2007) (Available from:
  17. Hoff, A.M.: Ein analytisches Verfahren zur Bestimmung der mittleren horizontalen Windgeschwindigkeiten über zweidimensionalen Hügeln. Ber. Inst. Meteorol. Klimatol. Univ. Hannover, 28, 68 pp. (1987).Google Scholar
  18. Jackson, P.S., J.C.R. Hunt: Turbulent wind flow over a low hill. Quart. J. Roy. Meteorol. Soc. 101, 929–955 (1975).Google Scholar
  19. Jensen, N.O.: A Note on Wind Generator Interaction. Risø-M-2411, Risø Natl. Lab., Roskilde (DK), 16 pp. (1983) (Available from
  20. Jensen, N.O., Petersen, E.L., Troen, I.: Extrapolation of Mean Wind Statistics with Special Regard to Wind Energy Applications, Report WCP-86, World Meteorol. Organization, Geneva, 85 pp. (1984).Google Scholar
  21. Justus, C.G., W.R. Hargraves, A. Mikhail, D. Graber: Methods for Estimating Wind Speed Frequency Distributions. J. Appl. Meteor. 17, 350–353 (1978).Google Scholar
  22. Kljun, N., P. Calanca, M.W. Rotach, H.P. Schmid: A simple two-dimensional parameterisation for flux footprint prediction (FFP). Geosci. Model Develop. 8, 3695–3713 (2015).Google Scholar
  23. Lugauer, M,, Winkler, P.: Thermal circulation in South Bavaria—climatology and synoptic aspects. Meteorol. Z. 14, 15–30 (2005).Google Scholar
  24. Mason, P. J.: Flow over the Summit of an Isolated Hill, Bound.-Lay. Meteorol. 37, 385–405 (1986).Google Scholar
  25. Mortensen, N.G., E-L. Petersen: Influence of topographical input data on the accuracy of wind flow modelling in complex terrain. European Wind Energy Conference & Exhibition 1997, Dublin, Ireland, October 1997 (1997).Google Scholar
  26. Panofsky, H.A., D. Larko, R. Lipschutz, G. Stone, E.F. Bradley, A.J. Bowen und J. Højstrup: Spectra of velocity components over complex terrain. Quart. J. Roy. Meteorol. Soc. 108, 215– 230 (1982).Google Scholar
  27. Pauscher, L., D. Callies, T. Klaas, T. Foken: Wind observations from a forested hill: Relating turbulence statistics to surface characteristics in hilly and patchy terrain. Meteorol. Z., prepubl. online (2017).Google Scholar
  28. Petersen, E.L., N.G. Mortensen, L. Landberg, J. Højstrup, H.P. Frank: Wind Power Meteorology. Part II: Siting and Models. Wind Energy, 1, 55–72 (1998b).Google Scholar
  29. Renfrew, I.A., Anderson, P.S.: Profiles of katabatic flow in summer and winter over Coats Land, Antarctica. Quart. J. Roy. Meteor. Soc. 132, 779–802 (2006).Google Scholar
  30. Smith, R.B.: The influence of mountains on the atmosphere. In: Landsberg HE, Saltzman B (Eds) Adv. Geophys. 21, 87–230 (1978).Google Scholar
  31. Steinacker, R.: Area-height distribution of a valley and its relation to the valley wind. Contr. Atmos. Phys. 57, 64–71 (1984).Google Scholar
  32. Steinfeld, G., S. Raasch, T. Markkanen: Footprints in homogeneously and heterogeneously driven boundary layers derived from a lagrangian stochastic particle model embedded into large-eddy simulation. Bound.-Layer Meteor. 129, 225–248 (2008).Google Scholar
  33. Sykes, R.I.: An Asymptotic Theory of Incompressible Turbulent Boundary Layer Flow over a Small-Lump. J. Fluid Mech. 101, 647–670 (1980).Google Scholar
  34. Taylor, P.A.: Numerical studies of neutrally stratified planetary boundary layer flow over gentle topography, I: Two-dimensional cases. Bound.-Lay. Meteorol., 12, 37–60 (1977).Google Scholar
  35. Taylor, P.A., Mason, P.J., Bradley, E.F.: Boundary-Layer Flow over Low Hills. Bound.-Lay. Meteorol. 39, 107–132 (1987).Google Scholar
  36. Troen, I., E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, Denmark. 656 pp. (1989).Google Scholar
  37. Vergeiner, I.: An energetic theory of slope winds. Meteorol. Atmos. Phys. 19, 189–191 (1982).Google Scholar
  38. Vergeiner, I., Dreiseitl, E.: Valley winds and slope winds—observations and elementary thoughts. Meteorol. Atmos. Phys. 36, 264–286 (1987).Google Scholar
  39. Watanabe, F. Uchida, T.: Micro-Siting of Wind Turbine in Complex Terrain: Simplified Fatigue Life Prediction of Main Bearing in Direct Drive Wind Turbines. Wind Eng., 39, 349–368 (2015).Google Scholar
  40. Wildmann, N., Bernard, S., Bange, J.: Measuring the local wind field at an escarpment using small remotely-piloted aircraft. Renewable Energy, 103, 613–619 (2017).Google Scholar
  41. Wood, N.: The onset of separation in neutral, turbulent flow over hills. Bound.-Lay. Meteorol., 76, 137–164 (1995).Google Scholar
  42. Zenman, O., N.O. Jensen: Modification of Turbulence Characteristics in Flow over Hills. Quart. J. Roy. Meteorol. Soc. 113, 55–80 (1987).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Meteorologie und KlimaforschungKarlsruher Institut für TechnologieGarmisch-PartenkirchenGermany

Personalised recommendations