Wind Regimes

  • Stefan Emeis
Part of the Green Energy and Technology book series (GREEN)


The principal origin of the winds in the Earth’s atmosphere and the potentially available power from these winds have been qualitatively described in Chap.  1.4.


  1. Ackermann, T., L. Söder: Wind energy technology and current status: a review. Renew. Sustain. Energy Rev. 4, 315–374 (2000)Google Scholar
  2. Peña, A., O. Rathmann: Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient. Wind Energ. 17(8), 1269–1285 (2014)Google Scholar
  3. Doswell, C. A., (Ed.): Severe Convective Storms. Meteor. Monogr. 28(50), 561 pp. (2001)Google Scholar
  4. Dotzek, N., S. Emeis, C. Lefebvre, J. Gerpott: Waterspouts over the North and Baltic Seas: Observations and climatology, prediction and reporting. Meteorol. Z. 19, 115–129 (2010)Google Scholar
  5. Dutton, J. A.: The Ceaseless Wind. Dover Publ., New York, 579 pp. (1986)Google Scholar
  6. Fujita, T. T., Byers, H. R.: Spearhead echo and downburst in the crash of an airliner. Monthly Weather Review, 105, 129–146 (1977)Google Scholar
  7. Grachev; A.A., C.W. Fairall: Dependence of the Monin–Obukhov Stability Parameter on the Bulk Richardson Number over the Ocean. J. Appl. Meteor., 36, 406–414 (1997)Google Scholar
  8. Grachev, A.A:, E.L. Andreas, C.W. Fairall, P.S. Guest, P.O.G. Persson: The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer. Bound.-Lay. Meteorol., 147, 51–82 (2013)Google Scholar
  9. Hawbecker, P., Basu, S., Manuel, L.: Realistic simulations of the July 1, 2011 severe wind event over the Buffalo Ridge Wind Farm. Wind Energy, (2017)
  10. Hess, G.D., J.R. Garratt: Evaluating models of the neutral, barotropic planetary boundary layer using integral measures. Part I: Overview. Bound.-Lay. Meteor. 104, 333–358 (2002)Google Scholar
  11. Houze, R.A.: Cloud Dynamics. Academic Press, San Diego, 570 pp. (1993)Google Scholar
  12. Jensen, N.O.: Change of Surface Roughness and the Planetary Boundary Layer. Quart. J. Roy.Meteorol. Soc. 104, 351–356 (1978)Google Scholar
  13. Kristensen, L., G. Jensen: Geostrophic Winds in Denmark: a preliminary study. Risø-R-1145(EN), 43 pp. (1999)Google Scholar
  14. Launiainen, J.: Derivation of the Relationship Between the Obukhov Stability Parameter and the Bulk Richardson Number for Flux Profile Studies. Bound.-Lay. Meteorol., 76, 165–179 (1995)Google Scholar
  15. Peña, A., S.-E. Gryning, J. Mann, C.B. Hasager: Length Scales of the Neutral Wind Profile over Homogeneous Terrain. J. Appl. Meteor. Climatol., 49, 792–806 (2010a)Google Scholar
  16. Peña, A., S.-E. Gryning, C. Hasager: Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theor. Appl. Climatol., 100, 325–335 (2010b)Google Scholar
  17. Rose, S., P. Jaramillo, M.J. Small, I. Grossmann, J. Apt: Quantifying the hurricane risk to offshore wind turbines. PNAS, published ahead of print February 13, 2012, (2012)
  18. Emeis, S., S. Frandsen: Reduction of horizontal wind speed in a boundary layer with obstacles. ‎Bound.-Layer Meteorol. 64(3), 297–305 (1993)Google Scholar
  19. Stull, R.B.: An Introduction to Boundary Layer Meteorology. Kluwer Acad. Publ., Dordrecht etc., 666 pp. (1988)Google Scholar
  20. Troen, I., E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, Denmark. 656 pp. (1989)Google Scholar
  21. Wakimoto, R. M.: Convectively driven high wind events. In Severe Convective Storms (pp. 255–298). American Meteorological Society (2001)Google Scholar
  22. Zilitinkevich, S.S.: Resistance laws and prediction equations for the depth of the planetary boundary layer. J. Atmos. Sci., 32, 741–752 (1975)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Meteorologie und KlimaforschungKarlsruher Institut für TechnologieGarmisch-PartenkirchenGermany

Personalised recommendations