Skip to main content

Outlook

  • Chapter
  • First Online:
Wind Energy Meteorology

Part of the book series: Green Energy and Technology ((GREEN))

  • 1533 Accesses

Abstract

This chapter is not designed to summarize the main points from the preceding chapters. This has already been done in the concluding subchapters of each of the Chaps. 39. Rather, we will try to look briefly at possible future developments and a few limitations for the use of the material in this book. This concerns technical aspects as well as assessment methods for meteorological conditions and possible climate impacts of large-scale wind energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens, U., M. Diehl, R. Schmehl (Eds.): Airborne Wind Energy. Springer Heidelberg etc., xxiii+611 pp. (2013)

    Google Scholar 

  • Bansal, S., G.K. Ananda, M.S. Selig: Development of an aerodynamic analysis methodology for segmented ultralight morphing rotors. 35th AIAA Applied Aerodynamics Conference, 4217 (2017)

    Google Scholar 

  • Bretton, S.-P., G. Moe: Status, plans and technologies for offshore wind turbines in Europe and North America. Renew. Ener. 34, 646–654 (2009)

    Google Scholar 

  • Breukelman, P., M. Kruijff, H.A. Fujii, Y. Maruyama: A New Wind-Power Generation Method Employed with High Altitude Wind. In: International Conference and Exhibition, Grand Renewable Energy, Tokyo July 27–August 1, 2014. (2014)

    Google Scholar 

  • Cañadillas, B., T. Neumann: Comparison Between LES Modelling and Experimental Observations under Offshore Conditions. DEWI Mag. 36, 48–52 (2010)

    Google Scholar 

  • Collins, W.D. et al.: The community climate system model version 3 (CCSM3) J. Clim. 19,2122–2143 (2006)

    Google Scholar 

  • Emeis, S.: Measurement Methods in Atmospheric Sciences. In situ and remote. Series: Quantifying the Environment Vol. 1. Borntraeger Stuttgart. XIV+257 pp. (2010)

    Google Scholar 

  • Emeis, S.: Surface-Based Remote Sensing of the Atmospheric Boundary Layer. Series: Atmospheric and Oceanographic Sciences Library, Vol. 40. Springer Heidelberg etc., X+174 pp. (2011)

    Google Scholar 

  • Geng, Q., M. Sugi: Possible Change of Extratropical Cyclone Activity due to Enhanced Greenhouse Gases and Sulfate Aerosols—Study with a High-Resolution AGCM. J. Climate, 16, 2262–2274 (2003)

    Google Scholar 

  • Grujicic, M., G. Arakere, B. Pandurangan, V. Sellappan, A. Vallejo, M. Ozen: Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades. J. Mat. Eng. Perform. 19, 1116–1127 (2010)

    Google Scholar 

  • Harris, R.A., L. Zhou, G. Xia: Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa. Remote Sensing, 6(12), 12234–12246 (2014)

    Google Scholar 

  • Hirth, L., Müller, S.: System-friendly wind power: How advanced wind turbine design can increase the economic value of electricity generated through wind power. Energy Economics, 56, 51–63 (2016)

    Google Scholar 

  • Karimirad M.: Floating Offshore Wind Turbines. In: Offshore Energy Structures. Springer, 53–76 (2014)

    Google Scholar 

  • Kiehl, J.T., J.J. Hack, G.B. Bonan, B.A. Boville, D.L. Williams, P.J. Rasch: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 1131–1149 (1998)

    Google Scholar 

  • Loyd, M.L.: Crosswind Kite Power. J. Energy 4, 106–111 (1980)

    Google Scholar 

  • Miller, L.M., F. Gans, A. Kleidon: Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst. Dynam. 2, 1–12 (2011)

    Google Scholar 

  • Nolan, P., P. Lynch, R. McGrath, T. Semmler, S. Wang: Simulating climate change and its effects on the wind energy resource of Ireland. Wind Energy, publ. online 1 Sept 2011, https://doi.org/10.1002/we.489 (2011)

  • Steinfeld, G., Tambke, J., Peinke, J., Heinemann, D.: Application of a large-eddy simulation model to the analysis of flow conditions in offshore wind farms. Geophys. Res. Abstr. 12, EGU2010-8320 (2010)

    Google Scholar 

  • Tang, B., D. Wu, X. Zhao, T. Zhou, W. Zhao, H. Wie: The Observed Impacts of Wind Farms on Local Vegetation Growth in Northern China. Remote Sensing, 9, 332 (2017)

    Google Scholar 

  • Thresher, R., M. Robinson, P. Veers: To Capture the Wind. Power and Energy Mag. IEEE, 5, 34–46 (2007)

    Google Scholar 

  • Trujillo, J.-J., F. Bingöl, G.C. Larsen, J. Mann, M. Kühn: Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning. Wind Energy, 14, 61–75 (2011)

    Google Scholar 

  • Wang, C., R.G. Prinn: Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys. 10, 2053–2061 (2010)

    Google Scholar 

  • Wang, C., R.G. Prinn: Potential climatic impacts and reliability of large-scale offshore wind farms. Environ. Res. Lett. 6, 025101 (6 pp) https://doi.org/10.1088/1748-9326/6/2/025101 (2011)

  • Wichtmann, T., A. Niemunis, T. Triantafyllidis: Validation and calibration of a high-cycle accumulation model based on cyclic triaxial tests on eight sands. Soils Found., 49, 711–728 (2009)

    Google Scholar 

  • Xia, G., L. Zhou: Detecting Wind Farm Impacts on Local Vegetation Growth in Texas and Illinois Using MODIS Vegetation Greenness Measurements. Remote Sensing, 9, 698 (2017)

    Google Scholar 

  • Xia, G., L. Zhou, J.M. Freedman, S. Baidya Roy, R.A. Harris, M.C. Cervarich: A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Climate Dynamics, 46, 2179–2196 (2016)

    Google Scholar 

  • Yin, J.H.: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 32, L18701, https://doi.org/10.1029/2005gl023684 (2005)

  • Zhou, L., Y. Tian, S.Baidya Roy, C. Thorncroft, L.F. Bosart, Y. Hu: Impacts of wind farms on land surface temperature. Nature Climate Change, 2, 539–543 (2012)

    Google Scholar 

  • Zhou, L., Y. Tian, S.Baidya Roy, Y. Dai, H. Chen: Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas. Climate Dynamics, 41, 307–326 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Emeis .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Emeis, S. (2018). Outlook. In: Wind Energy Meteorology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-72859-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72859-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72858-2

  • Online ISBN: 978-3-319-72859-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics