• Stefan Emeis
Part of the Green Energy and Technology book series (GREEN)


This chapter is not designed to summarize the main points from the preceding chapters. This has already been done in the concluding subchapters of each of the Chaps.  3 9. Rather, we will try to look briefly at possible future developments and a few limitations for the use of the material in this book. This concerns technical aspects as well as assessment methods for meteorological conditions and possible climate impacts of large-scale wind energy conversion.


  1. Ahrens, U., M. Diehl, R. Schmehl (Eds.): Airborne Wind Energy. Springer Heidelberg etc., xxiii+611 pp. (2013)Google Scholar
  2. Bansal, S., G.K. Ananda, M.S. Selig: Development of an aerodynamic analysis methodology for segmented ultralight morphing rotors. 35th AIAA Applied Aerodynamics Conference, 4217 (2017)Google Scholar
  3. Bretton, S.-P., G. Moe: Status, plans and technologies for offshore wind turbines in Europe and North America. Renew. Ener. 34, 646–654 (2009)Google Scholar
  4. Breukelman, P., M. Kruijff, H.A. Fujii, Y. Maruyama: A New Wind-Power Generation Method Employed with High Altitude Wind. In: International Conference and Exhibition, Grand Renewable Energy, Tokyo July 27–August 1, 2014. (2014)Google Scholar
  5. Cañadillas, B., T. Neumann: Comparison Between LES Modelling and Experimental Observations under Offshore Conditions. DEWI Mag. 36, 48–52 (2010)Google Scholar
  6. Collins, W.D. et al.: The community climate system model version 3 (CCSM3) J. Clim. 19,2122–2143 (2006)Google Scholar
  7. Emeis, S.: Measurement Methods in Atmospheric Sciences. In situ and remote. Series: Quantifying the Environment Vol. 1. Borntraeger Stuttgart. XIV+257 pp. (2010)Google Scholar
  8. Emeis, S.: Surface-Based Remote Sensing of the Atmospheric Boundary Layer. Series: Atmospheric and Oceanographic Sciences Library, Vol. 40. Springer Heidelberg etc., X+174 pp. (2011)Google Scholar
  9. Geng, Q., M. Sugi: Possible Change of Extratropical Cyclone Activity due to Enhanced Greenhouse Gases and Sulfate Aerosols—Study with a High-Resolution AGCM. J. Climate, 16, 2262–2274 (2003)Google Scholar
  10. Grujicic, M., G. Arakere, B. Pandurangan, V. Sellappan, A. Vallejo, M. Ozen: Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades. J. Mat. Eng. Perform. 19, 1116–1127 (2010)Google Scholar
  11. Harris, R.A., L. Zhou, G. Xia: Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa. Remote Sensing, 6(12), 12234–12246 (2014)Google Scholar
  12. Hirth, L., Müller, S.: System-friendly wind power: How advanced wind turbine design can increase the economic value of electricity generated through wind power. Energy Economics, 56, 51–63 (2016)Google Scholar
  13. Karimirad M.: Floating Offshore Wind Turbines. In: Offshore Energy Structures. Springer, 53–76 (2014)Google Scholar
  14. Kiehl, J.T., J.J. Hack, G.B. Bonan, B.A. Boville, D.L. Williams, P.J. Rasch: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 1131–1149 (1998)Google Scholar
  15. Loyd, M.L.: Crosswind Kite Power. J. Energy 4, 106–111 (1980)Google Scholar
  16. Miller, L.M., F. Gans, A. Kleidon: Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst. Dynam. 2, 1–12 (2011)Google Scholar
  17. Nolan, P., P. Lynch, R. McGrath, T. Semmler, S. Wang: Simulating climate change and its effects on the wind energy resource of Ireland. Wind Energy, publ. online 1 Sept 2011, (2011)
  18. Steinfeld, G., Tambke, J., Peinke, J., Heinemann, D.: Application of a large-eddy simulation model to the analysis of flow conditions in offshore wind farms. Geophys. Res. Abstr. 12, EGU2010-8320 (2010)Google Scholar
  19. Tang, B., D. Wu, X. Zhao, T. Zhou, W. Zhao, H. Wie: The Observed Impacts of Wind Farms on Local Vegetation Growth in Northern China. Remote Sensing, 9, 332 (2017)Google Scholar
  20. Thresher, R., M. Robinson, P. Veers: To Capture the Wind. Power and Energy Mag. IEEE, 5, 34–46 (2007)Google Scholar
  21. Trujillo, J.-J., F. Bingöl, G.C. Larsen, J. Mann, M. Kühn: Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning. Wind Energy, 14, 61–75 (2011)Google Scholar
  22. Wang, C., R.G. Prinn: Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys. 10, 2053–2061 (2010)Google Scholar
  23. Wang, C., R.G. Prinn: Potential climatic impacts and reliability of large-scale offshore wind farms. Environ. Res. Lett. 6, 025101 (6 pp) (2011)
  24. Wichtmann, T., A. Niemunis, T. Triantafyllidis: Validation and calibration of a high-cycle accumulation model based on cyclic triaxial tests on eight sands. Soils Found., 49, 711–728 (2009)Google Scholar
  25. Xia, G., L. Zhou: Detecting Wind Farm Impacts on Local Vegetation Growth in Texas and Illinois Using MODIS Vegetation Greenness Measurements. Remote Sensing, 9, 698 (2017)Google Scholar
  26. Xia, G., L. Zhou, J.M. Freedman, S. Baidya Roy, R.A. Harris, M.C. Cervarich: A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Climate Dynamics, 46, 2179–2196 (2016)Google Scholar
  27. Yin, J.H.: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 32, L18701, (2005)
  28. Zhou, L., Y. Tian, S.Baidya Roy, C. Thorncroft, L.F. Bosart, Y. Hu: Impacts of wind farms on land surface temperature. Nature Climate Change, 2, 539–543 (2012)Google Scholar
  29. Zhou, L., Y. Tian, S.Baidya Roy, Y. Dai, H. Chen: Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas. Climate Dynamics, 41, 307–326 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Meteorologie und KlimaforschungKarlsruher Institut für TechnologieGarmisch-PartenkirchenGermany

Personalised recommendations