Advertisement

Model-Based Damage Detection in Piezoelectric Fiber Based Composites

  • Khalid M. ShalanEmail author
  • Mohamed E. AbdelMeguid
  • Tarek M. HatemEmail author
  • Hesham A. Hegazi
  • Yehia A. Bahei-El-Din
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Piezoelectric Fiber-based Composites (PFCs) have significant potential as smart materials given their superior mechanical properties over piezoelectric wafers. Therefore, reliable models are needed to accurately predict PFCs behavior including inherent heterogeneity and coupled electro-mechanical fields. This paper offers a multi-resolution model (micro and macro) that calculates the homogenized moduli of heterogeneous PFCs including the coupled electro-mechanical field based on Transformation Field Analysis (TFA). The calculated properties from TFA micro analysis is used in a macro-scale finite element analysis to model the dynamic behavior of PFCs in macro-scale. Numerical dynamic analysis incorporates a simple structure in pristine condition and in two damage conditions, namely a delamination damage and an impact-induced damage, modeled using both modal analysis and implicit dynamic analysis.

Keywords

Structural health monitoring Piezoelectric fiber composites Modal analysis Delamination Transformation field analysis 

References

  1. 1.
    Ikeda T (1996) Fundamentals of piezoelectricity. Oxford University Press, UKGoogle Scholar
  2. 2.
    Bryant RG (2007) Overview of NASA Langley’s piezoelectric ceramic packaging technology and applications: NASA technical report, NASA Langley research center. Available at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080000875.pdf
  3. 3.
    Cady WG (1946) Piezoelectricity. McGraw Hill, LondonGoogle Scholar
  4. 4.
    Kholkin AL et al (2008) Smart ferroelectric ceramics for transducer applications. In: Schwartz E (ed) Smart materials. CRC Press, Taylor & Francis Group, LLC, UKGoogle Scholar
  5. 5.
    Uchino K, Ito Y (2008) Smart ceramics: transducers, sensors, and actuators. In: Schwartz E (ed) Smart materials. CRC Press, Taylor & Francis Group, LLC, UKGoogle Scholar
  6. 6.
    Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley & Sons, USAGoogle Scholar
  7. 7.
    Moulson AJ, Herbert JM (2003) Electroceramics: materials, properties, applications. John Wiley & Sons, USAGoogle Scholar
  8. 8.
    Gandhi MV, Thompson B (1992) Smart materials and structures. Springer Science & Business Media, GermanyGoogle Scholar
  9. 9.
    Ebnesajjad, S (2015) Fluoroplastics, Volume 2—Melt processible fluoropolymers—the definitive user’s guide and data book. William Andrew PublishingGoogle Scholar
  10. 10.
    Hagood N, Bent A (1993) Development of piezoelectric fiber composites for structural actuation. In: 34th Structures, Structural Dynamics and Materials Conference, pp 3625–3638Google Scholar
  11. 11.
    Wilkie WK et al (2000) Low-cost piezocomposite actuator for structural control applications. In: SPIE’s 7th annual international symposium on smart structures and materials. International Society for Optics and PhotonicsGoogle Scholar
  12. 12.
    Wilkie WK et al (2003) Method of fabricating a piezoelectric composite apparatus. Google PatentsGoogle Scholar
  13. 13.
    Hagood NW et al (1993) Improving transverse actuation of piezoceramics using interdigitated surface electrodes. In: 1993 North American conference on smart structures and materials. International Society for Optics and PhotonicsGoogle Scholar
  14. 14.
    White R, Voltmer F (1965) Direct piezoelectric coupling to surface elastic waves. Appl Phys Lett 7(12):314–316CrossRefGoogle Scholar
  15. 15.
    Birchmeier M et al (2009) Active fiber composites for the generation of Lamb waves. Ultrasonics 49(1):73–82CrossRefGoogle Scholar
  16. 16.
    Bent AA (1997) Active fiber composites for structural actuation, Ph.D. Thesis. Massachusetts Institute of Technology, Cambridge, MassachusettsGoogle Scholar
  17. 17.
    Wilkie W, High J, Bockman J (2002) Reliability testing of NASA piezocomposite actuators. In: Proceedings of Actuator 2002: 8th International Conference on New Actuators. Bremen, GermanyGoogle Scholar
  18. 18.
    Sodano HA, Park G, Inman DJ (2003) Vibration testing and control of an inflatable torus using multiple sensors/actuators. AIAA, AIAA Paper, p 1644Google Scholar
  19. 19.
    El-Etriby A et al (2014) A multiscale-based approach for composite materials with embedded PZT filaments for energy harvesting. In: smart structures and non destructive evaluation. SPIE, San DiegoGoogle Scholar
  20. 20.
    El-Etriby AE et al A Multi-scale based model for composite materials with embedded PZT filaments for energy harvesting. In: Karaman I, Arróyave R, Masad E (eds) Proceedings of the TMS Middle East—Mediterranean materials congress on energy and infrastructure systems (MEMA 2015). Springer International Publishing, Cham, pp 361–379Google Scholar
  21. 21.
    Hagood IV NW, Bent AA (1999) Composites for structural control. U.S. Patent 5,869,189, 9 Feb 1999Google Scholar
  22. 22.
    Bent AA, Hagood NW, Rodgers JP (1995) Anisotropic Actuation with piezoelectric fiber composites. Intell Mat Sys Struct 6:338–349CrossRefGoogle Scholar
  23. 23.
    Brockmann TH (2009) Theory of adaptive fiber composites: from piezoelectric material behavior to dynamics of rotating structures, Vol 161. Springer Science & Business Media, GermanyGoogle Scholar
  24. 24.
    Choi S-C, Park J-S, Kim J-H (2007) Vibration control of pre-twisted rotating composite thin-walled beams with piezoelectric fiber composites. J Sound Vib 300:176–196CrossRefGoogle Scholar
  25. 25.
    Sodano HA, Park G, Inman DJ (2004) An investigation into the performance of macro-fiber. Mech Syst Signal Process 18:683–697CrossRefGoogle Scholar
  26. 26.
    Hatem TM, Abdel-Meguid M (2014) A multiscale-based model for composite materials with embedded PZT filaments. In: Proceedings of the 2014 International Conference on Power Systems, Energy, Environment. Interlaken, SwitzerlandGoogle Scholar
  27. 27.
    Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences. The Royal SocietyGoogle Scholar
  28. 28.
    Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRefGoogle Scholar
  29. 29.
    Dunn M, Taya M (1993) Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int J Solids Struct 30(2):161–175CrossRefGoogle Scholar
  30. 30.
    Li JY, Dunn ML (1998) Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior. J Intell Mater Syst Struct 9(6):404–416CrossRefGoogle Scholar
  31. 31.
    Benveniste Y (1994) Exact results concerning the local fields and effective properties in piezoelectric composites. J Eng Mater Technol 116(3):260–267CrossRefGoogle Scholar
  32. 32.
    Schulgasser K (1992) Relationships between the effective properties of transversely isotropic piezoelectric composites. J Mech Phys Solids 40(2):473–479CrossRefGoogle Scholar
  33. 33.
    Kari S et al (2007) Numerical evaluation of effective material properties of transversely randomly distributed unidirectional piezoelectric fiber composites. J Intell Mater Syst Struct 18(4):361–372CrossRefGoogle Scholar
  34. 34.
    Bahei-El-Din Y (2009) Modelling electromechanical coupling in woven composites exhibiting damage. Proc Inst Mech Eng Part G: J Aerospace Eng 223(5):485–495CrossRefGoogle Scholar
  35. 35.
    Shalan KM et al (2014) Multiscale model and experimental study of damage in piezoelectric fiber-based composite. In: EWSHM—7th european workshop on structural health monitoring. HAL, Nantes, FranceGoogle Scholar
  36. 36.
    Hatem TM, Abuelfoutouh MN, Negm HM (2005) Structural health monitoring of metallic structures using modal properties. J Eng Appl Sci 52(3):609–623Google Scholar
  37. 37.
    Hatem TM, Abulfoutouh NM, Negm HM (2004) Application of genetic algorithms (GA) and neural networks (NN) to health monitoring of composite structures. In: 2nd European workshop on structural health monitoring. Munich, GermanyGoogle Scholar
  38. 38.
    Advanced Cerametrics Inc. Piezoelectric fiber composites. Product Catalogue, January 27 h, 2014. Available from: http://www.advancedcerametrics.com/products/energy-harvesting/piezoelectric-fiber-composites/
  39. 39.
    Farrar CR, Worden K (2013) Structural health monitoring: a machine learning prespective. Wiley, USAGoogle Scholar
  40. 40.
    IEEE, Standard 176 (1987), Institute of Electrical and Electronics Engineers Standard on Piezoelectricity. ANSI/IEEEGoogle Scholar
  41. 41.
    Berlincourt D, Krueger HHA, Near C (2013) Technical publications 226: important properties of morgan electro ceramics piezoelectric ceramics (PZT-4, PZT-5A, PZT-5H, PZT-8). Morgan Electro CeramicsGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Khalid M. Shalan
    • 1
    • 2
    Email author
  • Mohamed E. AbdelMeguid
    • 1
  • Tarek M. Hatem
    • 1
    • 3
    Email author
  • Hesham A. Hegazi
    • 2
  • Yehia A. Bahei-El-Din
    • 1
  1. 1.Centre for Simulation Innovation and Advanced ManufacturingThe British University in EgyptEl-Sherouk City, CairoEgypt
  2. 2.Mechanical Design and Production Department, Faculty of EngineeringCairo UniversityGizaEgypt
  3. 3.Microstructure Physics and Alloy Design DepartmentMax-Planck-Institut Fur EisenforschungDüsseldorfGermany

Personalised recommendations