Advertisement

Microstructure and Mechanical Behavior of Cryomilled Al–Mg Composites Reinforced with Nanometric Yttria Partially Stabilized Zirconia

  • Matthew Dussing
  • Hanry Yang
  • Troy D. Topping
  • Enrique J. Lavernia
  • Kaka Ma
  • Julie M. SchoenungEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The present work investigated the viability of using nanometric 3 mol% yttria partially stabilized zirconia (3YSZ) as a particulate reinforcement in ultrafine grained aluminum alloy matrix composites. Four types of composite materials, with variable amounts of coarse grain regions and volume fractions of 3YSZ, were fabricated through cryomilling and hot isostatic pressing; one of the materials was extruded. Al–Mg alloy (AA5083) was selected as the matrix alloy. Microstructural characterization revealed that the 3YSZ particles were well dispersed in the Al matrix. The grain sizes of the Al matrix ranged from 77 ± 41 to 362 ± 185 nm depending on the thermomechanical processing. The composite with 2.2 vol% 3YSZ exhibited an ultimate tensile strength of 795 MPa and a strain-to-failure of 1.84%. In contrast, the composite with 10 vol% 3YSZ exhibited an ultimate compressive strength of 611 MPa with 22.5% strain-to-failure; this composite also retained 30% of its room temperature strength at 673 K (400 ℃). Evaluation of strengthening mechanisms suggests that Hall-Petch strengthening is a predominant mechanism controlling the achieved strength.

Keywords

Al alloy matrix composites Ultrafine grained structure Yttria-stabilized zirconia Mechanical behavior 

Notes

Acknowledgements

Financial support from the Office of Naval Research (Grant Nos. N00014-12-1-0237 and N00014-12-C-0241) is gratefully acknowledged. Additionally, the authors would like to thank Daiichi Kigenso Kagaku Kogyo Co., Ltd. for complimentary supply of the 3YSZ powder used in Materials B and C in this study.

References

  1. 1.
    Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26:1137–1156CrossRefGoogle Scholar
  2. 2.
    Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39:1–23CrossRefGoogle Scholar
  3. 3.
    Tjong SC (2007) Novel nanoparticle‐reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater 9:639–652CrossRefGoogle Scholar
  4. 4.
    Borgonovo C, Apelian D (2011) Manufacture of aluminum nanocomposites: a critical review. Mater Sci Forum 678:1–22CrossRefGoogle Scholar
  5. 5.
    Ma K, Lavernia EJ, Schoenung JM (2017) Particulate reinforced aluminum alloy matrix composites—a review on the effect of microconstituents. Rev Adv Mater Sci 48:91–104Google Scholar
  6. 6.
    Han BQ, Ye J, Tang F, Schoenung J, Lavernia EJ (2007) Processing and behavior of nanostructured metallic alloys and composites by cryomilling. J Mater Sci 42:1660–1672CrossRefGoogle Scholar
  7. 7.
    Li Y, Zhang Z, Vogt R, Schoenung JM, Lavernia EJ (2011) Boundaries and interfaces in ultrafine grain composites. Acta Mater 59:7206–7218CrossRefGoogle Scholar
  8. 8.
    Jiang L, Ma K, Yang H, Li M, Lavernia EJ, Schoenung JM (2014) The microstructural design of trimodal aluminum composites. JOM 66:898–908 Google Scholar
  9. 9.
    Ye J, Schoenung JM (2004) Technical Cost modeling for the mechanical milling at cryogenic temperature (cryomilling). Adv Eng Mater 6:656–664CrossRefGoogle Scholar
  10. 10.
    Ye J, He J, Schoenung JM (2006) Cryomilling for the fabrication of a particulate B4C reinforced Al nanocomposite: Part I. Effects of process conditions on structure. Metall Mater Trans A 37:3099–3109CrossRefGoogle Scholar
  11. 11.
    Ye J, Han BQ, Lee Z, Ahn B, Nutt SR, Schoenung JM (2005) A tri-modal aluminum based composite with super-high strength. Scripta Mater 53:481–486CrossRefGoogle Scholar
  12. 12.
    Li Y, Zhao YH, Ortalan V, Liu W, Zhang ZH, Vogt RG, Browning ND, Lavernia EJ, Schoenung JM (2009) Investigation of aluminum-based nanocomposites with ultra-high strength. Mater Sci Eng A 527:305–316CrossRefGoogle Scholar
  13. 13.
    Vogt RG, Zhang Z, Topping TD, Lavernia EJ, Schoenung JM (2009) Cryomilled aluminum alloy and boron carbide nano-composite plate. J Mater Process Technol 209:5046–5053CrossRefGoogle Scholar
  14. 14.
    Yang H, Topping TD, Wehage K, Jiang L, Lavernia EJ, Schoenung JM (2014) Tensile behavior and strengthening mechanisms in a submicron B4C-reinforced Al trimodal composite. Mater Sci Eng A 616:35–43CrossRefGoogle Scholar
  15. 15.
    Zhang Z, Topping TD, Li Y, Vogt R, Zhou Y, Haines C, Paras J, Kapoor D, Schoenung JM, Lavernia EJ (2011) Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scripta Mater 65:652–655CrossRefGoogle Scholar
  16. 16.
    Jiang L, Yang H, Yee JK, Mo X, Topping T, Lavernia EJ, Schoenung JM (2016) Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles. Acta Mater 103:128–140CrossRefGoogle Scholar
  17. 17.
    Ma ZY, Li YL, Liang Y, Zheng F, Bi J, Tjong SC (1996) Nanometric Si3N4 particulate-reinforced aluminum composite. Mater Sci Eng A 219:229–231CrossRefGoogle Scholar
  18. 18.
    Zhang Z, Chen DL (2006) Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scripta Mater 54:1321–1326CrossRefGoogle Scholar
  19. 19.
    Garvie RC, Hannink RH, Pascoe RT (1975) Ceramic steel? Nature 258:703–704CrossRefGoogle Scholar
  20. 20.
    Basu B (2005) Toughening of yttria-stabilised tetragonal zirconia ceramics. Int Mater Rev 50:239–256CrossRefGoogle Scholar
  21. 21.
    Porter DL, Evans AG, Heuer AH (1979) Transformation-toughening in partially-stabilized zirconia (PSZ). Acta Metall 27:1649–1654CrossRefGoogle Scholar
  22. 22.
    Hannink RHJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia‐containing ceramics. J Am Ceram Soc 83:461–487CrossRefGoogle Scholar
  23. 23.
    Karihaloo BL (1991) Contribution of t→m Phase Transformation to the Toughening of ZTA. J Am Ceram Soc 74:1703–1706CrossRefGoogle Scholar
  24. 24.
    Matsumoto Y, Hirota K, Yamaguchi O, Inamura S, Miyamoto H, Shiokawa N, Tsuji K (1993) Mechanical properties of hot isostatically pressed zirconia‐toughened alumina ceramics prepared from coprecipitated powders. J Am Ceram Soc 76:2677–2680CrossRefGoogle Scholar
  25. 25.
    De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 23:937–945CrossRefGoogle Scholar
  26. 26.
    Magnani G, Brillante A (2005) Effect of the composition and sintering process on mechanical properties and residual stresses in zirconia–alumina composites. J Eur Ceram Soc 25:3383–3392CrossRefGoogle Scholar
  27. 27.
    Huang S, Binner J, Vaidhyanathan B, Brown P, Hampson C, Spacie C (2011) Development of nano zirconia toughened alumina for ceramic armor applications. In: Advances in ceramic armor VII. Wiley, pp 103–113Google Scholar
  28. 28.
    Geng L, Zheng ZZ, Yao CK, Mao JF, Imai T (2000) A new in situ composite fabricated by powder metallurgy with aluminum and nanocrystalline ZrO2 particles. J Mater Sci Lett 19:985–987CrossRefGoogle Scholar
  29. 29.
    Dutkiewicz J, Lityńska L, Maziarz W, Haberko K, Pyda W, Kanciruk A (2009) Structure and properties of nanocomposites prepared from ball milled 6061 aluminium alloy with ZrO2 nanoparticles. Cryst Res Technol 44:1163–1169CrossRefGoogle Scholar
  30. 30.
    Witkin DB, Lavernia EJ (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51:1–60CrossRefGoogle Scholar
  31. 31.
    Hashemi-Sadraei L, Mousavi SE, Vogt R, Li Y, Zhang Z, Lavernia EJ, Schoenung JM (2012) Influence of nitrogen content on thermal stability and grain growth kinetics of cryomilled Al nanocomposites. Metall Mater Trans A 43:747–756CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Zhu Y, Lavernia EJ (2010) Strategies for improving tensile ductility of bulk nanostructured materials. Adv Eng Mater 12:769–778CrossRefGoogle Scholar
  33. 33.
    Zhang Z, Dallek S, Vogt R, Li Y, Topping TD, Zhou Y, Schoenung JM, Lavernia EJ (2010) Degassing behavior of nanostructured Al and its composites. Metall Mater Trans A 41:532–541CrossRefGoogle Scholar
  34. 34.
    Tang F, Hagiwara M, Schoenung JM (2005) Formation of coarse-grained inter-particle regions during hot isostatic pressing of nanocrystalline powder. Scripta Mater 53:619–624CrossRefGoogle Scholar
  35. 35.
    Lucadamo G, Yang NYC, San Marchi C, Lavernia EJ (2006) Microstructure characterization in cryomilled Al 5083. Mater Sci Eng A 430:230–241CrossRefGoogle Scholar
  36. 36.
    Topping TD, Ahn B, Li Y, Nutt SR, Lavernia EJ (2012) Influence of process parameters on the mechanical behavior of an ultrafine-grained Al alloy. Metall Mater Trans A 43:505–519CrossRefGoogle Scholar
  37. 37.
    Lin Y, Wen H, Li Y, Wen B, Liu W, Lavernia EJ (2015) An analytical model for stress-induced grain growth in the presence of both second-phase particles and solute segregation at grain boundaries. Acta Mater 82:304–315CrossRefGoogle Scholar
  38. 38.
    Topping TD (2012) Materials science and engineering. University of California, Davis, CAGoogle Scholar
  39. 39.
    Ye J (2006) Materials science and engineering. University of California, DavisGoogle Scholar
  40. 40.
    Yin Z, Pan Q, Zhang Y, Jiang F (2000) Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys. Mater Sci Eng A 280:151–155CrossRefGoogle Scholar
  41. 41.
    Kendig KL, Miracle DB (2002) Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Mater 50:4165–4175CrossRefGoogle Scholar
  42. 42.
    Dobatkin S, Estrin Y, Zakharov V, Rostova T, Ukolova O, Chirkova A (2009) Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing. Int J Mater Res 100:1697–1704CrossRefGoogle Scholar
  43. 43.
    Lityñska L, Abou-Ras D, Kostorz G, Dutkiewicz J (2006) TEM and HREM study of Al3Zr precipitates in an Al‐Mg‐Si‐Zr alloy. J Microsc 223:182–184CrossRefGoogle Scholar
  44. 44.
    Nes E (1972) Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al-Zr alloy. Acta Metall 20:499–506CrossRefGoogle Scholar
  45. 45.
    Newbery AP, Ahn B, Pao P, Nutt S, Lavernia E (2007) A ductile UFG Al Alloy via cryomilling and quasi-isostatic forging. Adv Mater Res 29–30:21–29 Google Scholar
  46. 46.
    Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Sect B 64:747CrossRefGoogle Scholar
  47. 47.
    Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28Google Scholar
  48. 48.
    Hansen N (2004) Hall–Petch relation and boundary strengthening. Scripta Mater 51:801–806CrossRefGoogle Scholar
  49. 49.
    Davis JR (1993) Aluminum and aluminum alloys. ASM International, Materials ParkGoogle Scholar
  50. 50.
    Tsukuma K, Ueda K, Matsushita K, Shimada M (1985) High‐temperature strength and fracture toughness of Y2O3‐partially‐stabilized ZrO2/Al2O3 composites. J Am Ceram Soc 68:C-56–C-58Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Matthew Dussing
    • 1
  • Hanry Yang
    • 2
  • Troy D. Topping
    • 3
  • Enrique J. Lavernia
    • 4
  • Kaka Ma
    • 5
  • Julie M. Schoenung
    • 4
    Email author
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of California DavisDavisUSA
  2. 2.Keysight TechnologiesSanta RosaUSA
  3. 3.Department of Mechanical EngineeringCalifornia State University, SacramentoSacramentoUSA
  4. 4.Department of Chemical Engineering and Materials ScienceUniversity of California, IrvineIrvineUSA
  5. 5.Department of Mechanical EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations