Advertisement

Fundamental Issues and Highlights of Reactive Wetting in Carbon-Based Composites

  • Khurram IqbalEmail author
  • Stevens Cadet
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Wetting can be broadly classified into two categories: (a) non-reactive wetting (b) and reactive wetting. A chemical reaction occurs between the liquid/solid interface, and the resulting chemical bonds are responsible for wetting. The recent results and theoretical developments concerning the reactive wetting of carbon by liquid copper alloys are studied. A section is devoted to illustrate and discuss the effect of interfacial reactions in carbon/copper alloys system.

Keywords

C/Cu composites Reactivity Wetting 

References

  1. 1.
    Li Y, Bai P, Li Y (2009) Fabrication and fibre matrix interface characteristics of Cu/C(Fe) composite. Sci Sinter 41:193–198CrossRefGoogle Scholar
  2. 2.
    Hua Z, Liu Y, Yao G, Wang L, Ma J, Liang L (2010) Preparation and characterization of nickel-coated carbon fibers by electroplating. J Mater Eng Perform 21:324–330CrossRefGoogle Scholar
  3. 3.
    Liu Y, Zhang C, Qiao S, Yang Z (2010) Fabrication and microstructure of C/Cu composites. Adv. Eng. Mater 12.  https://doi.org/10.1002/adem.200900288
  4. 4.
    Mizumoto M, Tajima Y, Kagawa A (2004) Thermal expansion behavior of SiCP/aluminum alloy composites fabricated by a low-pressure infiltration process. Mater Trans 45:1769–1773CrossRefGoogle Scholar
  5. 5.
    Lin MH, Buchgraber W, Korb G, Kao PW (2002) Thermal cycling induced deformation and damage in carbon fiber reinforced copper composite. Scr. Mater. 46:169–173CrossRefGoogle Scholar
  6. 6.
    Mayerhofer KE, Neubauer E, Sittner CE, Hutter H (2002) Adhesion promotion of Cu on C by Cr intermediate layers investigated by the SIMS method. Anal Bioanal Chem 374:602–607CrossRefGoogle Scholar
  7. 7.
    Eustathopoulos N (1998) Dynamics of wetting in reaction metal/ceramic systems. Acta Mater 46:2319–2327Google Scholar
  8. 8.
    Michaud V, Mortensen A (2001) Infiltration processing of fibre reinforced composites: governing phenomena. Compos Part A: Appl Sci Manuf 32:981–996CrossRefGoogle Scholar
  9. 9.
    Neubauer E, Chotikaprakhan S, Dietzel D, Bein BK, Pelzl J, Eisenmenger-Sittner C, Schrank C, Korb G (2006) Loss of adhesion strength of PVD Cu films on carbon substrates after heat treatment and correlated effects on the thermal interface properties. J Appl Surf Sci 252:5432–5436CrossRefGoogle Scholar
  10. 10.
    Standing R, Nicholas M (1978) The wetting of alumina and vitreous carbon by Cu–Sn–Ti alloys. J Mater Sci 13:1509–1514CrossRefGoogle Scholar
  11. 11.
    Abel PB, Andras LK, Frank SH, Stephen VP (1994) Study of copper on graphite with titanium or chromium bond layer. J Mater Res 9:617–624CrossRefGoogle Scholar
  12. 12.
    Dezellus O, Eustathopoulos N (2010) Fundamental issues of reactive wetting by liquid metals. J Mater Sci 45:4256–4264CrossRefGoogle Scholar
  13. 13.
    Iqbal K, Sha JJ, Lei ZK, Maqsood A, Mujahid M (2014) Numerical studies of infiltration dynamics of liquid-copper and silicon/solid-carbon system. JOM 66:953–959CrossRefGoogle Scholar
  14. 14.
    Shinoda T, Liu H, Mishima Y, Suzuki T (1991) Interfacial compatibility in ceramic-fibre-reinforced metal composites. Mater Sci Eng 146:91–104CrossRefGoogle Scholar
  15. 15.
    Dezellus O, Hodaj F, Eustathopoulos N (2003) Progress in modeling of chemical-reaction limited wetting. J Eur Ceram Soc 23:2797–2803CrossRefGoogle Scholar
  16. 16.
    Arthur JR, Cho AY (1973) Adsorption and desorption kinetics of Cu and Au on (0001) graphite. Surf Sci 36:641–660CrossRefGoogle Scholar
  17. 17.
    Fitzer E (1988) Composites for high temperatures. Pure Appl Chem 60:287–302CrossRefGoogle Scholar
  18. 18.
    Kim T, Lee J, Kim Y, Kim JM, Yuan Z (2009) Investigation of the dynamic reactive wetting of Sn–Ag–Cu solder alloys on Ni(P)/ Au coated Cu substrates. Mater Trans 50:2695–2698CrossRefGoogle Scholar
  19. 19.
    Zhou ZM, Gao J, Li F, Wang YP, Kolbe M (2011) Experimental determination and thermodynamic modeling of phase equilibria in the Cu–Cr system. J Mater Sci 46:7039–7045CrossRefGoogle Scholar
  20. 20.
    Zhan Y, Peng D, She J (2012) Phase equilibria of the Cu–Ti–Er system at 773 K (500 ℃) and stability of the CuTi3 phase. Metall Mater Trans A 43A:4015–4022CrossRefGoogle Scholar
  21. 21.
    Lü L, Fuh JYH, Wong YS (2001) Characterization modeling and optimization. In: Laser-induced materials and processes for rapid prototyping. Springer, Boston, MA, p 201–239 Google Scholar
  22. 22.
    Aksay I, Hoye C, Pask J, Lupis CHP (1974) Chemical thermodynamics of materials. J Phys Chem 78:1178CrossRefGoogle Scholar
  23. 23.
    Naidich YV (1981) The wettability of solids by liquid metals. Prog Surf Membr Sci 14:353–484CrossRefGoogle Scholar
  24. 24.
    Zhou XB, De Hosson JM (1996) Reactive wetting of liquid metals on ceramic substrates. Acta Mater 44:421–426CrossRefGoogle Scholar
  25. 25.
    Mortimer DA, Nicholas M (1970) The wetting of carbon by copper and copper alloys. J Mater Sci 5:149–155CrossRefGoogle Scholar
  26. 26.
    Murr L (1974) Interfacial phenomenon in metals and alloys, Reading MA: Addison-Wesley Publishing Co, Boston, p 102Google Scholar
  27. 27.
    Masoudi M, Hashim M, Kamari HM, Salit MS (2013) Fabrication and characterization of Ni–SiC–Cr nanocomposite coatings. Appl Nanosci 3:357–362CrossRefGoogle Scholar
  28. 28.
    Aghaie E, Najafi A, Maleki-Ghaleh H, Mohebi H (2013) Effect of SiC concentration in electrolyte on Ni–SiC composite coating properties. J Surf Eng 29:177–182CrossRefGoogle Scholar
  29. 29.
    Bahaaideen FB, Ripin ZM, Ahmad ZA (2010) Electroless Ni-P-Cg (graphite)-SiC composite coating and its application onto piston rings of a small two stroke utility engine. JSIR 69:830–834Google Scholar
  30. 30.
    Vaezi MR, Sadrnezhaad SK, Nikzad L (2008) Electrodeposition of Ni-SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating charateristics. Colloids Surf A 315:176–182CrossRefGoogle Scholar
  31. 31.
    Bougiouri V, Voytovych R, Dezellus O, Eustathopoulos N (2007) Wetting and reactivity in Ni-Si/C system: experiments versus model predictions. J Mater Sci 42:2016–2023CrossRefGoogle Scholar
  32. 32.
    Sommers A, Wang Q, Han X, Joen CT, Park y, Jacobi A (2010) Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—a review. Appl Therm Eng 30:1277–1291CrossRefGoogle Scholar
  33. 33.
    Yang X, Zhao-hui C, Feng C (2014) High-temperature protective coatings for C/SiC composites. J Asian Ceram Soc 2:305–309CrossRefGoogle Scholar
  34. 34.
    Kumar S, Kumar A, Mala RB, Mokhasunavisu RR (2015) Fabrication and ablation studies of 4D C/SiC composite nozzle under liquid propulsion. Int J Appl Ceram Tec 12:176–190CrossRefGoogle Scholar
  35. 35.
    Srivastava VK (2012) Micro-structural characterization of Si-SiC ceramic derived from C/C-SiC composite. Am J Mater Sci 2:1–4CrossRefGoogle Scholar
  36. 36.
    Kumar S, Kumar A, Devi R, Shukla A, Gupta AK (2009) Capillary infiltration studies of liquids into 3D-stiched C-C performs part B: kinetics of silicon infiltration. J Eur Ceram Soc 29:2651–2657CrossRefGoogle Scholar
  37. 37.
    Margiotta JC, Zhang D, Nagle DC (2010) Microstructural evolution during silicon carbide (SiC) formation by liquid silicon infiltration using optical microscopy. Int J Refrac Met Hard Mater 28:191–197CrossRefGoogle Scholar
  38. 38.
    Sangsuwan P, Tewari SN, Gatica JE, Singh M, Dickerson R (1999) Reactive infiltration of silicon melt through microporous amorphous carbon preforms. Metall Mater Trans B 30B:933–944CrossRefGoogle Scholar
  39. 39.
    Yang J, Ilegbusi OJ (2000) Kinetics of silicon-metal alloy infiltration into porous carbon. Compos Part A 31:617–625CrossRefGoogle Scholar
  40. 40.
    Asthana R (2000) Dissolutive capillary penetration with expanding pores and transient contact angles. J Colloid Interf Sci 231:398–400Google Scholar
  41. 41.
    Asthana R (1998) Dynamic wetting effects during infiltration of metals. Scripta Mater 38:1203–1210Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesFederal Urdu University of Arts, Sciences and TechnologyKarachiPakistan
  2. 2.Architect Industries LabNew YorkUSA

Personalised recommendations