Magnetically Induced Cavitation for the Dispersion of Particles in Liquid Metals

  • M. SarmaEmail author
  • I. Grants
  • A. Bojarevics
  • G. Gerbeth
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


A contactless excitation of cavitation is possible by superposition of induction heating with a static axial magnetic field. This creates an alternating electromagnetic body force in a liquid metal which in turn produces pressure oscillations. Using this method, the onset of cavitation has been clearly observed in various liquid metals (tin, zinc, aluminum, steel SAE 304) at pressure oscillations in the range of 28…50 kPa. The present study aims to extend the previous work by producing steel metal matrix composites (MMC) and assessing the feasibility of the proposed method for particle dispersion in steel. Stainless steel (SAE 316L) samples with different ceramic inclusions, e.g. TiN, Al2O3, TiB2 as well as others, have been created. It has been demonstrated that the cavitation onset in the liquid steel varies extensively and depends on the cavitation nuclei rather than the strength of acoustic pressure. The microstructure of the produced samples has been analyzed using SEM and EDS.


MMC production Steel composites Cavitation treatment 



The financial support of the Helmholtz Alliance “Liquid Metal Technologies—LIMTECH” is gratefully acknowledged.


  1. 1.
    Tahamtan S, Emamy M, Halvaee A (2014) Effects of reinforcing particle size and interface bonding strength on tensile properties and fracture behavior of Al-A206/alumina micro/nanocomposites. J Compos Mater 48(27):3331–3346. CrossRefGoogle Scholar
  2. 2.
    Sharifi H, Nasresfahani MR (2016) Investigation into the kinetic behavior of molten aluminum pressureless infiltration into SiC preforms. Int J Mater Res 107(10):954–959. CrossRefGoogle Scholar
  3. 3.
    Lü SL, Xiao P, Wu SS, Fang XG (2017) Preparation and squeeze casting of nano-SiCP/A356 composite assisted with ultrasonic vibration process. Mater Sci Forum 879:1188–1193. doi:
  4. 4.
    Yan H, Huang Z-X, Qiu H-X (2017) Microstructure and mechanical properties of CNTs/A356 nanocomposites fabricated by high-intensity ultrasonic processing. Metall Mater Trans A 48(2):910–918. CrossRefGoogle Scholar
  5. 5.
    Chen L-Y, Xu J-Q, Choi H, Pozuelo M, Ma X, Bhowmick S, Yang J-M, Mathaudhu S, Li X-C (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528(7583):539–543. CrossRefGoogle Scholar
  6. 6.
    Braszczyńska-Malik KN, Kamieniak J (2017) AZ91 magnesium matrix foam composites with fly ash cenospheres fabricated by negative pressure infiltration technique. Mater Charact 128:209–216. CrossRefGoogle Scholar
  7. 7.
    Zhang X, Zhang Q, Hu H (2014) Tensile behaviour and microstructure of magnesium AM60-based hybrid composite containing Al2O3 fibres and particles. Mater Sci Eng A 607:269–276. CrossRefGoogle Scholar
  8. 8.
    Wang XJ, Wang NZ, Wang LY, Hu XS, Wu K, Wang YQ, Huang YD (2014) Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Mater Des 57:638–645. CrossRefGoogle Scholar
  9. 9.
    Li S, Sun B, Imai H, Mimoto T, Kondoh K (2013) Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Compos A Appl Sci Manuf 48(1):57–66. CrossRefGoogle Scholar
  10. 10.
    Munir KS, Zheng Y, Zhang D, Lin J, Li Y, Wen C (2017) Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater Sci Eng A 696:10–25. CrossRefGoogle Scholar
  11. 11.
    Dubuisson P, Carlan YD, Garat V, Blat M (2012) ODS ferritic/martensitic alloys for sodium fast reactor fuel pin cladding. J Nucl Mater 428(1–3):6–12. CrossRefGoogle Scholar
  12. 12.
    Franke P, Heintze C, Bergner F, Weißgärber T (2010) Mechanical properties of spark plasma sintered Fe-Cr compacts strengthened by nanodispersed yttria particles. Materialpruefung/Mater Test 52(3):133–138Google Scholar
  13. 13.
    Bonnet F, Daeschler V, Petitgand G (2014) High modulus steels: new requirement of automotive market. How to take up challenge? Can Metall Q 53(3):243–252. CrossRefGoogle Scholar
  14. 14.
    Springer H, Baron C, Szczepaniak A, Uhlenwinkel V, Raabe D (2017) Stiff, light, strong and ductile: nano-structured high modulus steel. Sci Rep 7(1) (
  15. 15.
    Bittmann B, Haupert F, Schlarb AK (2009) Ultrasonic dispersion of inorganic nanoparticles in epoxy resin. Ultrason Sonochem 16(5):622–628. CrossRefGoogle Scholar
  16. 16.
    Sumitomo S, Koizumi H, Uddin MA, Kato Y (2018) Comparison of dispersion behavior of agglomerated particles in liquid between ultrasonic irradiation and mechanical stirring. Ultrason Sonochem 40:822–831. CrossRefGoogle Scholar
  17. 17.
    Suslick KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, McNamara III, WB, Mdleleni MM, Wong M (1999) Acoustic cavitation and its chemical consequences. Philos Trans R Soc A: Math Phys Eng Sci 357(1751):335–353Google Scholar
  18. 18.
    Vivès C (1996) Crystallization of aluminium alloys in the presence of cavitation phenomena induced by a vibrating electromagnetic pressure. J Cryst Growth 158(1–2):118–127CrossRefGoogle Scholar
  19. 19.
    Grants I, Gerbeth G, Bojarevičs A (2015) Contactless magnetic excitation of acoustic cavitation in liquid metals. J Appl Phys 117(20) (
  20. 20.
    Sarma M, Grants I, Kaldre I, Bojarevics A, Gerbeth G (2017) Casting technology for ODS steels—dispersion of nanoparticles in liquid metals. IOP Conf Series: Mater Sci Eng 228(1):012020.
  21. 21.
    Abramov OV (1987) Action of high intensity ultrasound on solidifying metal. Ultrasonics 25(2):73–82. CrossRefGoogle Scholar
  22. 22.
    Neppiras EA (1980) Acoustic cavitation. Phys Rep 61(3):159–251. CrossRefGoogle Scholar
  23. 23.
    Cramer E, Lauterborn W (1982) Acoustic cavitation noise spectra. Appl Sci Res 38(1):209–214. CrossRefGoogle Scholar
  24. 24.
    Aparicio-Fernández R, Springer H, Szczepaniak A, Zhang H, Raabe D (2016) In-situ metal matrix composite steels: effect of alloying and annealing on morphology, structure and mechanical properties of TiB2 particle containing high modulus steels. Acta Mater 107:38–48. CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • M. Sarma
    • 1
    Email author
  • I. Grants
    • 1
    • 2
  • A. Bojarevics
    • 2
  • G. Gerbeth
    • 1
  1. 1.Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-RossendorfDresdenGermany
  2. 2.Institute of Physics, University of LatviaSalaspilsLatvia

Personalised recommendations