Advertisement

Synthesis and Microstructural Development of Particulate Reinforced Metal-Matrix Composites Using the Technique of Spray Atomization and Deposition

  • T. S. SrivatsanEmail author
  • Yaojun Lin
  • Fei Chen
  • K. Manigandan
  • Enrique J. Lavernia
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

In this paper, the synthesis of discontinuously-reinforced metal matrix composites using the technique of spray atomization and co-deposition is presented and briefly discussed. This technical manuscript provides a lucid overview of the salient features of the technique of spray atomization and deposition. An attempt is made to highlight the key attributes specific to the processing technique with specific reference to pre-mixed metal matrix composites. The key factors and viable mechanisms governing incorporation of the reinforcing phase during co-deposition is presented and adequately discussed. The microstructure of few composites synthesized by this technique and the key and observable features are briefly highlighted considering the conjoint and mutually interactive influences of processing variables and constituents of the metal-matrix composite.

Keywords

Spray atomization and deposition Metal-matrix composites Discontinuously-reinforced Processing techniques Processing variables 

References

  1. 1.
    Koss DA, Copley SM (1971) Thermally-induced residual stresses in eutectic composites. Metall Trans 2A, 1557–1560Google Scholar
  2. 2.
    Brown LM, Stobbs WM (1971) The work hardening of copper-silica. The Philos Mag: J Theoret, Exp Appl Phys, 23(185)Google Scholar
  3. 3.
    Divecha AP, Crowe CR, Fishman SG (1977) Failure modes in composites IV. Metallurgical Society of AIME, Warrendale, PA, pp 406–411Google Scholar
  4. 4.
    Divecha AP, Fishman SG, Karmarkar SD (1981) Silicon carbide reinforced aluminum: a formidable composite. J Metals 33(9):12Google Scholar
  5. 5.
    Nair SV, Tien JK, Bates RC (1985) SiC reinforced aluminium metal matrix composites. Int Metals Rev 30(6):285–296Google Scholar
  6. 6.
    Metal matrix composites overview: paper number MMCIAC no. 253, Santa Barbara, California, USAGoogle Scholar
  7. 7.
    Schoutens JE (1982) Introduction to metal matrix composites, MMCIAC tutorial series no. 272Google Scholar
  8. 8.
    Taya M, Arsenault RJ (eds) (1989) Metal matrix composites: thermomechanical behavior. Pergamon Press, New York, USAGoogle Scholar
  9. 9.
    Harrigan WC Jr (1991) Metal matrix composites. In: Everett RK, Arsenault RJ (eds) Metal matrix composites: mechanisms and properties. Academic Press, USA, pp 1–15Google Scholar
  10. 10.
    Lin Yaojun, Zhou Yizhang, Lavernia Enrique J (2004) On the influence of in-situ reactions on grain size during reactive atomization and deposition. Metall Mat Trans 35A:3251–3260CrossRefGoogle Scholar
  11. 11.
    McDaniel DL (1985) Analysis of stress-strain, fracture and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement. Metall Trans 16A:1105–1115Google Scholar
  12. 12.
    Dermarkar S (1986) Met Mater 2:144–147Google Scholar
  13. 13.
    Chawla KK (1987) Composite materials. Springer, New YorkCrossRefGoogle Scholar
  14. 14.
    Srivatsan TS, Sudarshan TS (1993) Rapid solidification technology: an engineering guide. Techonomic Publishing Inc., PA, USA, pp 603–700Google Scholar
  15. 15.
    Hunt WH Jr, Cook CR, Sawtell RR (1991) Cost effective high performance powder metallurgy aluminum matrix composites for aerospace applications, SAE technical paper series 91-0834, Warrendale, PA, USAGoogle Scholar
  16. 16.
    Hunt WH Jr (1991) Cost effective high performance composites. In: Presented at international conference on powder metallurgy aerospace materials, Lausanne, SwitzerlandGoogle Scholar
  17. 17.
    Clyne TW, Withers PG (1993) An introduction to metal matrix composites, Cambridge Solid State Science Series, Cambridge University Press, UKGoogle Scholar
  18. 18.
    Kreider KG (1974) Metal matrix composites, composite materials, vol 4. Academy Press, New York, p 1Google Scholar
  19. 19.
    Kelley P (1979) Composites, vol 10, p. 2.tGoogle Scholar
  20. 20.
    Srivatsan TS, Sudarshan TS, Lavernia EJ (1995) Processing of discontinuously-reinforced metal matrix composites by Rapid Solidification. Prog Mat Sci 39(4–5):317–409 Google Scholar
  21. 21.
    Fishman SG (1986) J Metals 38(3):26Google Scholar
  22. 22.
    Flom Y, Arsenault RJ (1986) Mat Sci Eng 77:191Google Scholar
  23. 23.
    Chou TW, Kelly A, Okura A (1985) Composites 16:187Google Scholar
  24. 24.
    Piggot MT (1980) Load bearing fiber composites. Pergamon Press, New YorkGoogle Scholar
  25. 25.
    Broutman LJ, Krock RH (1969) Modern composite materials. Addison Wesley Publishing Company, New YorkGoogle Scholar
  26. 26.
    Arsenault RJ (1984) Mat Sci Eng 64:171Google Scholar
  27. 27.
    Crow CR, Gray RA, Hasson DF (1985) Proceedings of the fifth international conference on composite materials. In: Harrigan WC Jr, Strife J, Dhingra AK (eds) The metallurgical society of AIME, Warrendale, p 843Google Scholar
  28. 28.
    Ibrahim IA, Mohamad FA, Lavernia EJ (1991) J Mat Sci 26:1137Google Scholar
  29. 29.
    Crowe CR, Hasson DF (1992) Strength of metals and alloys. In: Gifkins RC (ed) Proceedings of the sixth international conference, Pergamon Press, AustraliaGoogle Scholar
  30. 30.
    Rack HJ (1988) Adv Mat Manuf Process 3(3):327Google Scholar
  31. 31.
    Srivatsan TS, Ibrahim IA, Mohamad FA, Lavernia EJ (1991) J Mat Sci 27Google Scholar
  32. 32.
    Davidson DL (1987) Metall Transac 18A:2125Google Scholar
  33. 33.
    Logsdon WA, Liaw PK (1986) Eng Fract Mech 24:737Google Scholar
  34. 34.
    Manoharan S, Lewandowski JJ (1990) Acta Metall 328(3):489CrossRefGoogle Scholar
  35. 35.
    Davidson DL (1989) Eng Fract Mech 33(6):965CrossRefGoogle Scholar
  36. 36.
    Davidson DL (1991) The effect of particulate SiC on fatigue crack growth in a cast-extruded aluminum alloy composite. Metall Trans 22A:97CrossRefGoogle Scholar
  37. 37.
    Shang JK, Ritchie RO (1989) Crack bridging by uncracked ligaments during fatigue crack growth in SiC-reinforced aluminum-alloy composites. Metall Trans 20A:897CrossRefGoogle Scholar
  38. 38.
    Singer ARE (1972) J Inst Metals 100:185Google Scholar
  39. 39.
    Willis J (1988) Metals Mat 4:485Google Scholar
  40. 40.
    Buhrmaster CL, Clark DE, Smart HO (1988) J Metals 40:44Google Scholar
  41. 41.
    Kojima KO, Lewis RE, Kaufman MJ (1989). In: Sanders TH Jr, Starke EA Jr (eds) Aluminum-lithium alloys V. MCE Publishers, Birmingham, United Kingdom, p 85Google Scholar
  42. 42.
    White J, Palmer IG, Hughes IR, Court SA (1989) Aluminum-Lithium Alloys V. In: Sanders TH Jr, Starke EA Jr (eds). MCE Publishers, Birmingham, United Kingdom, p 1635Google Scholar
  43. 43.
    Llorca J, Ruiz J, Healy JC, Elices M, Beevers CJ (1994) Mat Sci Eng A 185:1Google Scholar
  44. 44.
    Gupta M, Mohamad FA, Lavernia EJ (1989). In: Mostaphaci H (ed) Proceedings of the 17th international symposium on advances in processing and characterization off ceramic metal matrix composites. Pergamon Press, Oxford, UK, p 236Google Scholar
  45. 45.
    Gupta M, Mohamad FA, Lavernia EJ (1990) Solidification behavior of Al-Li-SiCp metal matrix composites processed using variable co-deposition of multi-phase materials. Mat Manuf Process 5(2):165–196Google Scholar
  46. 46.
    Ibrahim IA, Mohamad FA, Lavernia EJ (1991) Particulate-reinforced metal matrix c composites, a review. J Mat Sci 26:1137–1156CrossRefGoogle Scholar
  47. 47.
    Wu Y, Lavernia EJ (1991) Spray atomized and co-deposited 6061 Al/SiCp composites. J Metals 43(8):16–23Google Scholar
  48. 48.
    Zhang J, Perez RJ, Gupta M, Lavernia EJ (1993) Damping behavior of particulate-reinforced 2519 aluminum metal matrix composites. Scr Metall Mater 28:91–96CrossRefGoogle Scholar
  49. 49.
    Wu Y (1994) Master of science thesis, University of California at Irvine, Irvine, CAGoogle Scholar
  50. 50.
    Wu M, Srivatsan TS, Pickens JR, Lavernia EJ (1992) Microstructure and mechanical properties of spray deposited Al-Cu-Li-Ag-Mg-Zr alloy. Scr Metall Mater 27:761–766CrossRefGoogle Scholar
  51. 51.
    Gupta M, Srivatsan TS, Mohamad FA, Lavernia EJ (1993) Microstructural evolution and mechanical properties of SiC/Al2O3 particulate reinforced spray deposited metal matrix composites. J Mat Sci 28:2245–2259CrossRefGoogle Scholar
  52. 52.
    Kim NJ, Park WJ, Ahn S, Elias L (1994). In: Upadhyaya K (ed) High performance metal matrix and ceramic matrix composites. The Minerals, Metals and Materials Society, Warrendale, PA, p 137Google Scholar
  53. 53.
    Gupta M, Bowo K, Lavernia EJ, Earthman JC (1993) Effect of particulate type on fatigue crack propagation in Al-Li based spray deposited composites. Scr Metall Mater 28:1053–1058CrossRefGoogle Scholar
  54. 54.
    Gupta M, Ibrahim IA, Mohamad FA, Lavernia EJ (1991) J Mat Sci 26:6673Google Scholar
  55. 55.
    Gupta M, Mohamad FA, Lavernia EJ (1991) The effects of discontinuous reinforcements on the distribution of ceramic reinforcements during spray atomization and co-deposition. Int J Rapid Solidification 6:247–284Google Scholar
  56. 56.
    Gupta M, Mohamad FA, Lavernia EJ (1992) The effect of ceramic reinforcements during spray atomization and co-deposition of metal matrix composites: part i; heat transfer. Metall Trans A 23A:831–843CrossRefGoogle Scholar
  57. 57.
    Perez RJ, Zhang J, Lavernia EJ (1992) Strain amplitude dependence of 6061 Al MMCs. Scr Metall Mater 27:1111CrossRefGoogle Scholar
  58. 58.
    Zeng X, Lavernia EJ (1992) Interfacial behavior during spray atomization and co-deposition. Int J Rapid Solidification 7:219–243Google Scholar
  59. 59.
    Wu Y, Lavernia EJ (1992) Interaction mechanisms between ceramic particles and atomized metallic droplets. Metall Trans A 23A:2923–2937CrossRefGoogle Scholar
  60. 60.
    Wu Y, Lavernia EJ (1994). In: Ravi VA, Srivatsan TS, Moore JJ (eds) Processing and fabrication of advanced materials III. The Minerals, Metals and Materials Society Warrendale, PA, p 501Google Scholar
  61. 61.
    Srivatsan TS, Lavernia EJ (1994) Cyclic strain resistance of a spray atomized and deposited cast aluminum alloy metal matrix composites. Compos Eng Int J 4(4):459–472CrossRefGoogle Scholar
  62. 62.
    Gupta M, Lane C, Lavernia EJ (1992) Microstructure and properties of spray atomized and deposited Al-7Si/SiCp metal matrix composites. Scr Metall Mater 26:825–830CrossRefGoogle Scholar
  63. 63.
    Gupta M, Juarez-Islas J, Frazier WE, Mohamad FA, Lavernia EJ (1992) Microstructure, excess solid solubility and elevated temperature behavior of spray atomized and co-deposited Al-Ti-SiC. Metall Trans B 23B:719–736CrossRefGoogle Scholar
  64. 64.
    Armanie KP, Zaidi MA (1987) Metallographic examination of osprey MMC sample, Technical report, Alcoa Technical Center, Pittsburgh, PA, p 1Google Scholar
  65. 65.
    Maker PP, Cantor B, Katerman L (1990). In: Kahn T, Effenberg G (eds) International conference on advanced aluminum and magnesium alloys. ASM International, Materials Park Ohio, p 659Google Scholar
  66. 66.
    Mathur P, Kim MH, Lawley A, Apelian D (1990) Powder metallurgy: key to advanced materials technology. ASM International, Materials Park, Ohio, p 55Google Scholar
  67. 67.
    Majagi SI, Ranganathan K, Lawley A, Apelian D (1992). In: Lavernia EJ, Gungor MN (eds) Microstructural design by solidification processing. The Minerals, Metals and Materials Society, Warrendale, PA, p 139Google Scholar
  68. 68.
    Perez JF, Morris F (1994) Scripta Metallurgica Materialia 31:231Google Scholar
  69. 69.
    Unigame Y, Lawley A, Apelian D (1993) In-situ spray casting of dispersion strengthened alloys I: thermodynamic and reaction kinetics, 1993 powder metallurgy world congress, paper number 14E-T6-6, Kyoto. Japan Powder Metallurgy Association, JapanGoogle Scholar
  70. 70.
    Ranganathan K, Lawley A, Apelian D (1993) In situ casting of dispersion strengthened alloys-II, experimental studies, paper number 14E-T6-6, 1993 powder metallurgy world congress, Kyoto. Japan Powder Metallurgy Association, JapanGoogle Scholar
  71. 71.
    Zhao YY, Grant PS, Cantor B (1993) J Microsc 169(2):263Google Scholar
  72. 72.
    Zhao YY, Grant PS, Cantor B (1685) J Physique 3:1685Google Scholar
  73. 73.
    Baskin D, Wolfenstein J, Lavernia EJ (1994) Elevated temperature mechanical behavior of CoSi and particulate reinforced CoSi produced by spray deposition. J Mater Res 9(2):362–371CrossRefGoogle Scholar
  74. 74.
    Jeng YL, Wolfenstein J, Lavernia EJ (1993) Scripta Metallurgica Materialia 28:453Google Scholar
  75. 75.
    Jeng YL, Lavernia EJ, Wolfenstein J, Bailey DE, Sickinger A (1993) Creep behavior of plasma sprayed SiC reinforced MoSi2. Scr Metall Mater 29:107–111CrossRefGoogle Scholar
  76. 76.
    Zeng X, Liu H, Chu MG, Lavernia EJ (1992) An experimental investigation of reactive spray atomization and deposition processing of Ni3Al/Y2O3 using N2-O2 atomization. Metall Trans A 23A:3394–3399Google Scholar
  77. 77.
    Liang X, Lavernia EJ (1992) Interface behavior in Ni3Al/TiB2 intermetallic matrix composites. Mat Sci Eng A 153 1–2:654–661Google Scholar
  78. 78.
    Lawley A, Apelian D (1994) Powder Metall 37:123Google Scholar
  79. 79.
    Lawrynowicz DE, Lavernia EJ (1994) Spray atomization and deposition processing of fiber-reinforced intermetallic matrix composites. Scr Metall Mater 31(9):1277–1281CrossRefGoogle Scholar
  80. 80.
    Lawrynowicz DE, Lavernia EJ (1995) A review of sensors and techniques used to monitor processing parameters during spray atomization. J Mat Sci 30:1125–1138CrossRefGoogle Scholar
  81. 81.
    Wu Y, Zhang J, Lavernia EJ (1994) Modeling of the incorporation of ceramic particulates in metallic droplets during spray atomization and co-injection. Metall Mat Trans B 25 B:135–147Google Scholar
  82. 82.
    Ibrahim IA, Mohamed FA, Lavernia EJ (1990). In: Kahn T, Effenberg G (eds) International conference on advanced aluminum and magnesium alloys. ASM International, Materials Park, OHIO, p 745Google Scholar
  83. 83.
    Lavernia EJ (1991) SAMPE Q 22:2Google Scholar
  84. 84.
    Zhang J, Perez RJ, Lavernia EJ (1994). In: Chawla KK, Liaw PK, Fishman SG (eds) High performance composites. The Minerals, Metals and Materials Society, Warrendale, PA, USA, p 361Google Scholar
  85. 85.
    Wu M, Zhang J, Hunt WH Jr, Lewandowski JJ, Lavernia EJ (1996) J Mat Synth Process, 4:127 Google Scholar
  86. 86.
    Singer ARE (1991) Metal matrix composites made by spray forming. Mat Sci Eng 135A:13CrossRefGoogle Scholar
  87. 87.
    Singer ARE, Ozbek S (1985) Metal matrix composites produced by spray deposition. Powder Metall 28(2):72CrossRefGoogle Scholar
  88. 88.
    Leatham AG, Ogilvy A, Elias L (1993) The osprey process: current status and future possibilities. P/M in Aerospace, Defense and Demanding Applications, San Diego, 7–10 Feb 1993Google Scholar
  89. 89.
    Zeng X, Nutt SR, Lavernia EJ (1995) Microstructural characterization of Ni3Al processing by reactive atomization and deposition. Metall Mat Trans 26A:817–828CrossRefGoogle Scholar
  90. 90.
    Liu H, Rangel RH, Lavernia EJ (1995) Modeling of molten droplet impingement on a non-flat surface. Acta Metall Mater 43(5):2053–2072CrossRefGoogle Scholar
  91. 91.
    Lee AK, Sanchez-Caldera LE, Chun JH, Suh NP (1989). In: McCandish LE (ed) Multicomponent ultrafine microstructures, MRS conference series. Metals Research Society, Pittsburgh, PA, vol 1342, p 87Google Scholar
  92. 92.
    Liu H, Zeng ZX, Lavernia EJ (1993) Processing maps for reactive atomization and development processing. Scr Metall Mater 29:1341–1344CrossRefGoogle Scholar
  93. 93.
    Majagi SI, Ranganathan K, Lawley A, Apelian D (1992) In-Situ spray forming of metal matrix composites, in Proceedings of IRC 92: Processing. In: Loretto MH, Beevers CJ (eds) Properties and Application of Metallic and Ceramic Materials, vol 1. MCE Publishers Ltd, Birmingham, UK, pp 135–140Google Scholar
  94. 94.
    Mutasim ZZ, Smith RW (1992). In: Bernecki TF (ed) Thermal spray coatings: properties, processes and applications. ASM International, Materials Park, Ohio, USA, p 273Google Scholar
  95. 95.
    Tiwari R, Boulos MI, Jiang XL, Gitzhofer F (1994) Reactive plasma spray of refractory composites, presented at thermal spray synthesis of composites, 1994 materials week. ASM International, Materials Park, Ohio, USA, Chicago, IllinoisGoogle Scholar
  96. 96.
    Castro RG (1994) Molybdenum disilicide composites produced by plasma spray forming, a presentation at the symposium on thermal spray synthesis of composites, materials week, Chicago, Illinois, USAGoogle Scholar
  97. 97.
    Lawrynowicz DE, Wolfenstine J, Nutt SR, Hurt AM, Lavernia EJ (1995) Reactive synthesis and characterization of MoSi2/SiC using low pressure plasma deposition and methane. Scr Metall Mater 32(5):689–693CrossRefGoogle Scholar
  98. 98.
    Smith RW (1993) Powder Metall Int 25:9Google Scholar
  99. 99.
    Kacar AS, Rana F, DM Stefanescu (1991) Mat Sci Eng A 135:95Google Scholar
  100. 100.
    Rohatgi PK, Asthana R, Yadav RN, Ray S (1990) Metall Trans A 21A:2073Google Scholar
  101. 101.
    Ayers JD (1984) Wear 97:249Google Scholar
  102. 102.
    Ayers JD, Schaefer RJ, Robey WP (1981) J Metals 33(8):19Google Scholar
  103. 103.
    Ayers JD, Bolster RN (1984) Wear 93:193Google Scholar
  104. 104.
    Rohatgi PK, Asthana R, Das S (1986) Int Metals Rev 31:115Google Scholar
  105. 105.
    Tiwari R, Herman H (1991) Scripts Metallurgica Materialia 25:1103Google Scholar
  106. 106.
    Gupta M, Mohamed FA, Lavernia EJ (1991) Heat transfer mechanisms and their effects on microstructure during spray atomization and co-deposition of metal matrix composites. Mater Sci Eng, A 144(1–2):99–110CrossRefGoogle Scholar
  107. 107.
    Perez RJ, Zhang J, Gungor MN, Lavernia EJ (1993) Damping behavior of 6061 Al/graphite MMCs. Metall Trans A 24A:701–712CrossRefGoogle Scholar
  108. 108.
    Maher PP, Grant PS, Cantor B, Katerman L (1990) Manufacture of spray formed aluminum-based alloys and composites, ICSF 90, p 31Google Scholar
  109. 109.
    Lee DJ, Vaudin MD, Handwerker CA, Katter UR (1988) Mat Res Symp Proc 120:293Google Scholar
  110. 110.
    Lo SH, Dionne S, Carpenter G, Zimcik D (1989). In: Lin RY, Arsenault RJ, Martin GP, Fishman SG (eds) Interfaces in metal matrix composites. The Minerals, Metals and Materials Society, Warrendale, PA, p 1675Google Scholar
  111. 111.
    Carpenter GJC, Lo SH (1992) J Mat Sci 27:1827Google Scholar
  112. 112.
    Lin Yaojun, Zhou Yizhang, Lavernia Enrique J (2004) Microstructural characterization of oxides in 5083 Al synthesized by reactive atomization and deposition. J Mater Res 19(10):3090–3099CrossRefGoogle Scholar
  113. 113.
    Lin Y, Zhou Y, Lavernia EJ (2004) An analytical model for the oxide size in Al alloys synthesized by reactive atomization and deposition. Metall Mat Trans 35A:3265–3275Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • T. S. Srivatsan
    • 1
    Email author
  • Yaojun Lin
    • 2
  • Fei Chen
    • 2
  • K. Manigandan
    • 3
  • Enrique J. Lavernia
    • 2
  1. 1.The University of AkronAkronUSA
  2. 2.Chemical Engineering and Materials ScienceUniversity of California, IrvineIrvineUSA
  3. 3.Department of Mechanical EngineeringThe University of AkronAkronUSA

Personalised recommendations