Skip to main content

The Social Context of the Emergence of Vector-Borne Diseases

  • Chapter
  • First Online:
Clear-Cutting Disease Control

Abstract

The Brazilian strain of Zika virus (ZIKV-BR) is one of several recently emergent or reemergent vector-borne human infections, pathogens transmitted by the bite of an infected arthropod species (Dick et al. 1952; Kindhauser et al. 2016; Wilder-Smith et al. 2017). The new Zika strain is transmitted, as are other major arboviruses, by Aedes spp. mosquitoes, with some debate as to whether other mosquito genera can transmit the virus (Ayres 2016; Fernandes et al. 2016; Evans et al. 2017; Hunter 2017). Its progenitor appears to have originated in Senegal and Coˆte d’Ivoire before spreading across Asia and more recently, and explosively, South and Central America (Musso 2015; Shen et al. 2016; Faria et al. 2017). Suitable New World niches extend beyond areas struck so far (Messina et al. 2016; Attaway et al. 2017) (Fig. 1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, S., Gugliemini, O., Harber, S., Harrison, A., Houle, L., et al., 2017, Environmental and social change drive the explosive emergence of Zika virus in the Americas, PLoS Neglected Tropical Diseases. doi: https://doi.org/10.1371/journal.pntd.0005135.

  • Althouse, B.M., Vasilakis, N., Sall, A.A., Diallo, M., Weaver, S.C., Hanley, K.A., 2016, Potential for Zika Virus to establish a sylvatic transmission cycle in the Americas, PLoS Negl Trop Dis, 10(12):e0005055.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aragao, N.C., Muller, G.A., Balbino, V.Q., Costa Junior, C.R., Figueiredo Junior, C.S., Alencar, J., Marcondes, C.B., 2010, A list of mosquito species of the Brazilian State of Pernambuco, including the first report of Haemagogus janthinomys (Diptera: Culicidae), Yellow Fever vector and 14 other species (Diptera: Culicidae), Revista da Sociedade Brasileira de Medicina Tropical, 43(4):458–459.

    Article  PubMed  Google Scholar 

  • Attaway, D.F., Waters, N.M., Geraghty, E.M., Jacobsen, K.H., 2017, Zika virus: Endemic and epidemic ranges of Aedes mosquito transmission, Journal of Infection and Public Health, 10(1):120–123.

    Article  PubMed  Google Scholar 

  • Austin, K., Gonzalez-Roglich, M., Schaffer-Smith, D., Schwanes, A., Swenson, J., 2017, Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers, Environmental Research Letters, 12:05–4009.

    Google Scholar 

  • Ayres, C.F.J., 2016, Identification of Zika virus vectors and implications for control, Lancet Infect Dis, 16(3):278279.

    Article  Google Scholar 

  • Bailey, N.T.J., 1975, The Mathematical Theory of Infectious Diseases, Second Edition, Griffin, London.

    Google Scholar 

  • Bailey, N.T.J., 1982, The Biomathematics of Malaria, Griffin, London.

    Google Scholar 

  • Barona, E., Ramankutty, N., Hyman, G., Commes, O., 2010, The role of pasture and soybean in deforestation of the Brazilian Amazon, Environmental Research Letters, 5:024002.

    Article  Google Scholar 

  • Barrera, R., Amador, M., MacKay, A.J., 2011, Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico, PLoS Negl Trop Dis, 5(12):e1378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrera, R., Navarro, J.C., Mora, J.D., Dominguez, D., Gonzalez, J., 1995, Public service deficiencies and Aedes aegypti breeding sites in Venezuela, Bull Pan Am Health Organ., 29(3):193–205.

    CAS  PubMed  Google Scholar 

  • Bellanatonio, M., Yousefi, A., 2016. The ultimate mystery meat: Exposing the secrets behind Burger King and global meat production, Available online at www.mightyearth.org/mysterymeat/.

  • Bicca-Marques, J.C., Calegaro-Marques, C., Rylands, A.B., Strier, K., Mittermeirer, R., Almeida, M.A., et al., 2017, Yellow fever threatens Atlantic Forest primates, Sci. Adv. e-letter http://advances.sciencemag.org/content/3/1/e1600946/tab-e-letters.

  • Bicca-Marques, J.C., Freitas, D.S., 2010, The role of monkeys, mosquitoes, and humans in the occurrence of a yellow fever outbreak in a fragmented landscape in south Brazil: protecting howler monkeys is a matter of public health, Trop. Cons. Sci. 3:31–42.

    Article  Google Scholar 

  • Brannstrom, C., 2009, South America’s neoliberal agricultural frontiers: Places of environmental sacrifice or conservation opportunity, AMBIO: A Journal of the Human Environment, 38(3):141–149.

    Google Scholar 

  • Brown, J.E., Evans, B.R., Zheng, W., Obas, V., Barrera-Martinez, L., Egizi, A., Zhao, H., et al., 2014, Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito, Evolution, 68(2):514–525.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, R.G., Loureno de Oliveira, R., Braga, I.A., 2014, Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas, Memórias do Instituto Oswaldo Cruz, 109(6):787–796.

    Google Scholar 

  • Cavalcanti, L.P., Tauil, P.L., Alencar, C.H., et al., 2016, Zika virus infection, associated microcephaly, and low yellow fever vaccination coverage in Brazil: is there any causal link?, J Infect Dev Ctries, 10:563566.

    Google Scholar 

  • Centeno, M.A., Cohen, J.N., 2012, The arc of neoliberalism, Annual Review of Sociology, 38:317340. doi: https://doi.org/10.1146/annurev-soc-081309-150235.

    Article  Google Scholar 

  • Chaves, L.F., 2017, Climate change and the biology of insect vectors of human populations. In: Johnson, S., Jones, H., editors, Invertebrates and Global Climate Change, Wiley, Chichester, UK, pp. 126–147.

    Google Scholar 

  • Chaves, L.F., Cohen, J.M., Pascual, M., Wilson, M.L., 2008, Social exclusion modifies climate and deforestation impacts on a vector-borne disease, PLoS Neglected Tropical Diseases, 2(2):e176. Available online at https://doi.org/10.1371/journal.pntd.0000176.

  • Chaves, L.F. and Koenraadt, C.J.M., 2010, Climate change and highland malaria: Fresh air for a hot debate. The Quarterly Review of Biology, 85:27–55.

    Article  PubMed  Google Scholar 

  • Chitunhu, S., Musenge, E. 2016, Spatial and socio-economic effects on malaria morbidity in children under 5 years in Malawi in 2012, Spatiotemporal Epidemiology 16:21–33.

    Article  Google Scholar 

  • Cover, T., Thomas, J., 2006, Elements of Information Theory, Second Edition, Wiley, New York.

    Google Scholar 

  • Cox, J., Grillet, M.E., Ramos, O.M., Amador, M., Barrera, R., 2007, Habitat segregation of dengue vectors along an urban environmental gradient, Am J Trop Med Hyg., 76(5):820–826.

    PubMed  Google Scholar 

  • Dalal, N., Greenhalgh, D., Mao, X., 2007, A stochastic model of AIDS and condom use, Journal of Mathematical Analysis and Applications, 325:36–53.

    Article  Google Scholar 

  • de Albuquerque, C.M., Melo-Santos, M.A., Bezerra, M.A., Barbosa, R.M., Silva, D.F., da Silva, E., 2000, Primeiro registro de Aedes albopictus Area da Mata Atlantica, Recife, PE, Brasil, Revista de Saude Publica 34(3):314–315.

    Article  PubMed  Google Scholar 

  • de Castro M., R. Monte-Mor, D. Sawyer, B. Singer, 2006, Malaria risk on the Amazon frontier, PNAS, 103:2452–2457.

    Article  PubMed  PubMed Central  Google Scholar 

  • Degeling, C., Johnson, J., Ian Kerridge, I., Andrew Wilson, A., Michael Ward, M., Cameron Stewart, C., Gwendolyn Gilbert, G., 2015, Implementing a One Health approach to emerging infectious disease: reflections on the socio-political, ethical and legal dimensions, BMC Public Health, 15:130.

    Google Scholar 

  • Dick, G.W.A, Kitchen, S.F., Haddow, A.J. 1952, Zika Virus (I). Isolations and serological specificity, Transactions of the Royal Society for Tropical Medicine and Hygiene, 46(5):509–520.

    Article  CAS  Google Scholar 

  • Dzingirai, V., Bukachi, S., Leach, M., Mangwanya, L., Scoones, I., and Wilkinson, A., 2017, Structural drivers of vulnerability to zoonotic disease in Africa. Phil. Trans. R. Soc. B, 372(1725):20160169.

    Google Scholar 

  • Evans, M.V., Dallas, T.A., Han, B.A., Murdock, C.C., Drake, J.M., 2017, Data-driven identification of potential Zika virus vectors, Elife, Feb 28;6. pii: e22053. doi: https://doi.org/10.7554/eLife.22053.

  • Faria, N.R., Azevedo Rdo, S., Kraemer, M.U., Souza, R., Cunha, M.S., Hill, S.C., Theze, J., 2016a, Zika virus in the Americas: Early epidemiological and genetic findings, Science, 352(6283):345–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faria, N.R., Lourenco, J., Marques de Cerqueira, E., Maia de Lima, M., Pybus, O., Carlos Junior Alcantara, L., 2016b, Epidemiology of Chikungunya Virus in Bahia, Brazil, 2014-2015, PLoS Curr., 8, pii: ecurrents.outbreaks.c97507e3e48efb946401755d468c28b2

    Google Scholar 

  • Faria, N.R., Quick, J., Claro, I.M., Theze, J., de Jesus, J.G., Giovanetti, M., Kraemer, M.U.G., et al., 2017, Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature, 546:406–410.

    Google Scholar 

  • Fernandes, R.S., Campos, S.S., Ferreira-de-Brito, A., de Miranda, R.M., da Silva, K.A.B., de Castro, M.G., et al., 2016, Culex quinquefasciatus from Rio de Janeiro is not competent to transmit the local Zika virus, PLoS Neglected Tropical Diseases, 10(9):e0004993.

    Article  PubMed  PubMed Central  Google Scholar 

  • Finley-Brook, M., 2007, Green neoliberal space: the Mesoamerican biological corridor, Journal of Latin American Geography, 6:101–124.

    Article  Google Scholar 

  • Fornace, K., Abidin, T., Alexander, N., Brock, P., Grigg, M., Murphy, A., William, T., et al., 2016, Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia, Emerging Infectious Diseases, 22: doi: https://doi.org/10.3201/eid2202.150656.

  • Fornance, K., Abidin, T., Alexander, N., Brock, P. et al., 2016, Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia, Emerging Infectious Diseases, 22, 201–208.

    Article  Google Scholar 

  • Ganti, T., 2014, Neoliberalism. Annual Review of Anthropology, 43:89104. doi: https://doi.org/10.1146/annurev-anthro-092412-155528.

    Article  Google Scholar 

  • Gottdenker, N., Chaves, L.F., Calzada, J.E., Saldana, A., Carroll, C.R., 2012, Host life history strategy, species diversity, and habitat influence Trypanosoma cruzi vector infection in changing landscapes, PLoS Negl Trop Dis, 6(11):e1884.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottwalt, A., 2013, Impacts of deforestation on vector-borne disease, Global Journal of Health Science, ghjournal.org/impacts-of-deforestation-on-vector-borne-disease-incidence-2/

    Google Scholar 

  • Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J. 2011, A stochastic differential equation SIS epidemic model, SIAM Journal of Applied Mathematics, 71:876–902.

    Article  Google Scholar 

  • Halstead, S.B., 2003, Neutralization and antibody dependent enhancement of dengue viruses, Adv Virus Res., 60:421467.

    Google Scholar 

  • Halstead, S.B., 2017, Biologic evidence required for Zika disease enhancement by dengue antibodies, Emerg Infect Dis., 23(4):569–573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haque, U., Ball, J.D., Zhang, W., Khan, M.M., Treviño, C.J.A., 2016, Clinical and spatial features of Zika virus in Mexico, Acta Trop., 162:5–10.

    Google Scholar 

  • Harvey, D., 1982/2006, The Limits to Capital, Verso, New York.

    Google Scholar 

  • Harvey, D., 2005, A Brief History of Neoliberalism, Oxford University Press, Oxford.

    Google Scholar 

  • Hecht, S.B., 2014, Forests lost and found in tropical Latin America: the woodland ‘green revolution’, The Journal of Peasant Studies, 41(5):877–909.

    Google Scholar 

  • Huddell, A., 2010, Effects of neoliberal reforms on small-scale agriculture in Brazil, Global Majority E-Journal, 1:74–84.

    Google Scholar 

  • Hunter, F.F., 2017, Linking only Aedes aegypti with Zika Virus has world-wide public health implications, Front Microbiol., 8:1248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, B.A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M.Y., et al., 2013, Zoonosis emergence linked to agricultural intensification and environmental change, PNAS, 110:8399 8404.

    Google Scholar 

  • Jones, B.A., Betson, M., Pfeiffer, D.U., 2017, Eco-social processes influencing infectious disease emergence and spread, Parasitology, 144(1):26–36.

    Google Scholar 

  • Kawiecki, A.B., Christofferson, R.C., 2016, Zika virus-induced antibody response enhances dengue virus serotype 2 replication in vitro, Journal of Infectious Diseases, 214:1357–1360.

    Article  PubMed  Google Scholar 

  • Kindhauser, M.K., Allen, T., Frank, V., Santhana, R.S., Dye, C., 2016, Zika: the origin and spread of a mosquito-borne virus, Bull World Health Organ. 1;94(9):675–686C.

    Google Scholar 

  • Kingsley, P., Taylor, E.M., 2017, One Health: competing perspectives in an emerging field, Parasitology, 144(1):7–14.

    Google Scholar 

  • Kock, R.A., 2010, The newly proposed Laikipia disease control fence in Kenya, In K. Ferguson, J. Hanks (eds.), Fencing Impacts: A Review of the Environmental, Social and Economic Impacts of Game and Veterinary Fencing in Africa with Particular Reference to the Great Limpopo and Kavango-Zambezi Transfrontier Conservation Areas, 7175. Pretoria Mammal Research Institute.

    Google Scholar 

  • Kraemer, M., Sinka, M., Duda, K., Myline, A., Shearer, F., Barker, C., et al., 2015, The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus, eLIFE, 4:e08347 (online open access).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lapola, D.M., Martinelli, L.A., Peres, C.A., Ometto, J.P.H.B., Ferreira, M.E., et al., 2014, Pervasive transition of the Brazilian land-use system, Nature Climate Change, 4:27–35.

    Article  Google Scholar 

  • Le Flohic, G., Porphyre, V., Barbazan, P., Gonzalez, J.P., 2013, Review of climate, landscape, and viral genetics as drivers of the Japanese encephalitis virus ecology, PLoS Negl Trop Dis., 7(9):e2208.

    Google Scholar 

  • Levins, R., Awerbuch, T., Brinkmann, U., Eckardt, I., Epstein, P., Makhoul, N., de Possas, C.A., Puccia, C., Spielman, A. and Wilson, M.E., 1994, The emergence of new diseases, American Scientist, 82:52–60.

    Google Scholar 

  • Lindsay, S., Birley, M., 2004, Rural development and malaria control in Sub-Saharan Africa. Ecohealth, 1:129–137.

    Google Scholar 

  • Londono-Renteria, B., Troupin, A., Cardenas, J.C., Hall, A., Perez, O.G., Cardenas, L., Hartstone-Rose, A., Halstead, S.B., Colpitts, T.M., 2017, A relevant in vitro human model for the study of Zika virus antibody-dependent enhancement, J Gen Virol. Jul 8. doi: https://doi.org/10.1099/jgv.0.000833.

  • Maas, B., Karp, D.S., Bumrungsri, S., Darras, K., Gonthier, D., Huang, J.C., Lindell, C.A., et al., 2016, Bird and bat predation services in tropical forests and agroforestry landscapes. Biol Rev Camb Philos Soc., 91(4):1081–1101.

    Article  PubMed  Google Scholar 

  • Mahalingam, S., Teixeira, M.M., Halstead, S.B., 2017, Zika enhancement: a reality check, Lancet Infect Dis., 17(7):686–688.

    Article  PubMed  Google Scholar 

  • Mandal, S., Sakar, R., Sinha, S., 2011, Mathematical models of malaria – a review, Malaria Journal, 10/1/202 (online open access).

    Google Scholar 

  • Maye, D., Dibden, J., Higgens, V. , Potter, C, 2012, Governing biosecurity in a neoliberal world: Comparative perspectives from Australia and the United Kingdom, Environment and Planning A, 44:150168.

    Article  Google Scholar 

  • Maye, D., Enticott, G., Naylor, R., Ilbery, B., Kirwan, J., 2014, Animal disease and narratives of nature: Farmers reactions to the neoliberal governance of bovine Tuberculosis, Journal of Rural Studies, 36:401410.

    Article  Google Scholar 

  • Messina, J., Kraemer, M., Brady, O., Pigott, D., Shearer, F., Weiss, D., et al., 2016, Mapping global environmental suitability for Zika virus, eLIFE 5:e15272 (online).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirowski, P., 2009, Postface: defining neoliberalism, In P. Mirowski, D. Plehwe (eds), The Road From Mont Pélerin: The Making of the Neoliberal Thought Collective, Harvard University Press, Cambridge.

    Google Scholar 

  • Miyagi, I. and Toma, T., 1980, Studies on the mosquitoes in Yaeyama Islands, Japan: 5. Notes on the mosquitoes collected in forest areas of Iriomotejima, Japanese Journal of Sanitary Zoology, 31:81–91.

    Article  Google Scholar 

  • Mogi, M. and Sota, T., 1996, Physical and biological attributes of water channels utilized by Culex pipiens pallens immatures in Saga City southwest Japan, Journal of the American Mosquito Control Association, 12:206–214.

    CAS  PubMed  Google Scholar 

  • Musso, D., 2015, Zika virus transmission from French Polynesia to Brazil, Emerging Infectious Disease, 21(10):1887.

    Article  Google Scholar 

  • Nah, K., Mizumoto, K., Miyamatsu, Y., Yasuda, Y., Kinoshita, R., Nishiura, H., 2016, Estimating risks of importation and local transmission of Zika virus infection, PeerJ., 4:e1904. doi: https://doi.org/10.7717/peerj.1904.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oklander L.I., Miño, C.I., Fernández, G., Caputo, M., Corach, D., 2017, Genetic structure in the southernmost populations of black-and-gold howler monkeys (Alouatta caraya) and its conservation implications, PLos ONE, 12(10):e0185867.

    Google Scholar 

  • Olson S., Gangnon, R., Silveira, G., Patz, J., 2010, Deforestation and malaria in Mancio Lima County, Brazil, Emerging Infection and Infectious Disease, 16:1108–1115.

    Article  Google Scholar 

  • Oviedo-Pastrana, M., Mendez, N., Mattar, S., Arrieta, G., Gomezcaceres, L., 2017, Epidemic outbreak of Chikungunya in two neighboring towns in the Colombian Caribbean: a survival analysis, Archives of Public Health, 75:1. doi: https://doi.org/10.1186/s13690-016-0169-1. eCollection 2017.

    Google Scholar 

  • Priyamvada, L., Quicke, K.M., Hudson, W.H., et al., 2016, Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus, Proc Natl Acad Sci USA, 113:78527857.

    Article  Google Scholar 

  • Protter, P., 1990, Stochastic Integration and Differential Equations, Springer, New York.

    Book  Google Scholar 

  • Roossinck, M., Garcia-Arenal, F., 2015, Ecosystem simplification, biodiversity loss and plant virus emergence, Current Opinion in Virology, 10:56–62.

    Article  PubMed  Google Scholar 

  • Rosales-Castillo, J.A., Vazquez-Garciduenas, M.S., Alvarez-Hernandez, H., Chassin-Noria, O., Varela-Murillo, A.I., Zavala-Paramo, M.G., Cano-Camacho, H., Vazquez-Marrufo, G., 2011, Genetic diversity and population structure of Escherichia coli from neighboring small-scale dairy farms, J Microbiol., 49(5):693–702.

    Google Scholar 

  • Rulli, M.R., Santini, M., Hayman, D.T.S, D’Odorico, P., 2017, The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks, Scientific Reports, 7, Article number: 41613. doi: https://doi.org/10.1038/srep41613.

    Article  PubMed Central  Google Scholar 

  • Saccaro, N., Mation, L., Sakowski, P., 2016, Impacts of deforestation on the incidence of diseases in the Brazilian Amazon, IPEA Discussion Paper 2145 (English ISSN 1415-4765) www.ipea.gov.br.

  • Samy, A.M., Thomas, S.M., Wahed, A.A., Cohoon, K.P., Peterson, A.T., 2016, Mapping the global geographic potential of Zika virus spread, Mem Inst Oswaldo Cruz, 111(9):559–560.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrecker, T., Bambra, C., 2015, How Politics Makes Us Sick: Neoliberal Epidemics, Palgrave MacMillan, New York.

    Book  Google Scholar 

  • Shen, S., Shi, J., Wang, J., Tang, S., Wang, H., Hu, Z., Deng, F. 2016. Phylogenetic analysis revealed the central roles of two African countries in the evolution and worldwide spread of Zika virus, Virol Sin., 31(2):118–130.

    Article  PubMed  Google Scholar 

  • Singer, B., de Castro, M., 2001, Agricultural colonization and malaria on the Amazon frontier, Annals of the New York Academy of Sciences, 954:184–222.

    Article  CAS  PubMed  Google Scholar 

  • Song, B.H., Yun, S.I., Woolley, M., Lee, Y.M. 2017, Zika virus: History, epidemiology, transmission, and clinical presentation, J Neuroimmunol. 308:50–64.

    Google Scholar 

  • Tabuchi, H., Rigby, C., 2017, Amazon deforestation, once tamed comes roaring back, New York Times, Feb. 24, Times Business Day Online.

    Google Scholar 

  • Tusting, L.S., Rek, J., Arinaitwe, E., Staedke, S.G., Kamya, M.R., Cano, J., Bottomley, C., et al., 2016, Why is malaria associated with poverty? Findings from a cohort study in rural Uganda, Infectious Disease and Poverty, 5(1):78.

    Google Scholar 

  • Vasconcelos, C., Novo, E., Donalisio, M., 2006, Use of remote sensing to study the influence of environmental changes on malaria distribution in the Brazilian Amazon, Cad Saude Publica, 22:517–526.

    Article  PubMed  Google Scholar 

  • Vittor, A., Gilman, R., Tielsch, J., Glass, G., Shields, T., Sanchez-Lozano, W., Pinedo-Cancino, V., Patz, J., 2006, The effects of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of Falciparium Malaria in the Peruvian Amazon, American Journal of Tropical Medicine and Hugiene, 74:3–11.

    Google Scholar 

  • Vittor, A., Gilman, R., Tielsch, J., Glass, G., Shields, T., Sanchez- Lozano, W., Pinedo, V., et al., 2009, Linking deforestation to Malaria in the Amazon: Characterization of the breeding habitat of the principal Malaria vector Anopheles darlingi, American Journal of Torpical Medicine and Hygiend, 81:5–12.

    Google Scholar 

  • Wallace, R.G., Bergmann, L., Kock, R., Gilbert, M., Hogerwerf, L., Wallace, R., Holmberg, M., 2015, The dawn of Structural One Health: A new science tracking disease emergence along circuits of capital, Social Science and Medicine, 129:68–77.

    Article  PubMed  Google Scholar 

  • Wallace, R.G., Kock, R.A., 2012, Whose food footprint? Capitalism, agriculture and the environment, Human Geography, 5(1):6383.

    Google Scholar 

  • Wallace, R.G., Wallace, R. (eds.), 2016, Neoliberal Ebola: Modeling Disease Emergence from Finance to Forest and Farm, Springer, Switzerland.

    Google Scholar 

  • Wang, W., Wenlong, L., Zizhen, L., Hui, Zhang, 2011, The effect of colored noise on spatiotemporal dynamics of biological invasion in a diffusive predator–prey system, Biosystems, 104(1):48–56.

    Google Scholar 

  • Wilder-Smith, A., Gubler, D.J., Weaver, S.C., Monath, T.P., Heymann, D.L., Scott, T.W., 2017, Epidemic arboviral diseases: priorities for research and public health, Lancet Infect Dis. 17(3):e101–e106. doi: https://doi.org/10.1016/S1473-3099(16)30518-7.

    Article  PubMed  Google Scholar 

  • Yang, H., Ferreira, M., 2000, Assessing the effects of global warming and local social and economic conditions on the malaria transmission, Revista de Saude Publica, 34:214–222.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Q., Mao, X., 2013, Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations, Nonlinear Analysis: Real World Applications, 14:1434–1456.

    Google Scholar 

  • Yasuoka, J., Levins, R., 2007, Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology, American Journal of Tropical Medicine and Hygiene, 76:450–460.

    PubMed  Google Scholar 

  • Zellweger, R.M., Cano, J., Mangeas, M., Taglioni, F., Mercier, A., Despinoy, M., Menks, C.E., et al., 2017, Socioeconomic and environmental determinants of dengue transmission in an urban setting: An ecological study in Nouma, New Caledonia. PLoS Neglected Tropical Diseases, 11(4):e0005471.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wallace, R. et al. (2018). The Social Context of the Emergence of Vector-Borne Diseases. In: Clear-Cutting Disease Control. Springer, Cham. https://doi.org/10.1007/978-3-319-72850-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72850-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72849-0

  • Online ISBN: 978-3-319-72850-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics