Skip to main content

Support Recovery for Multiband Spectrum Sensing Based on Modulated Wideband Converter with SwSOMP Algorithm

  • Conference paper
  • First Online:
5G for Future Wireless Networks (5GWN 2017)

Abstract

The Modulated Wideband Converter (MWC) can provide a sub-Nyquist sampling approach to sense sparse multiband analog signals and reconstruct the frequency support set. However, the existing SOMP reconstruction algorithms need a priori information of signal sparsity. This paper applies the SwOMP algorithm to the CTF (Continuous-To-Finite) block of MWC. The SwSOMP algorithm uses stage-wise weak selection in SOMP, and it can reduce computational cost and solve large scale problems. It does not need prior information of signal sparsity, and the frequency support can be reconstructed blindly. The simulation results demonstrate that, MWC system with SwSOMP algorithm, compared with the SOMP algorithm, can use less number of channels, achieve higher percentage of correct support recovery blindly, and reduce the sampling rate of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen, D., Akiva, A., Avraham, B., et al.: Centralized cooperative spectrum sensing from sub-nyquist samples for cognitive radios. In: IEEE International Conference on Communications (ICC), pp. 8–12. IEEE Press, London (2015)

    Google Scholar 

  2. Walden, R.H.: Analog-to-digital converters and associated IC technologies. In: Proceedings of IEEE Compound Semiconductor Integrated Circuits Symposium, pp. 1–2. IEEE Press, Monterey (2008)

    Google Scholar 

  3. Candes, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  4. Healy, D., Brady, D.J.: Compression at the physical interface. IEEE Signal Process. Mag. 25(2), 67–71 (2008)

    Article  Google Scholar 

  5. Tropp, J.A., Laska, J.N., Duarte, M.F., et al.: Beyond Nyquist: efficient sampling of sparse band-limited signals. IEEE Trans. Inf. Theory 56(1), 520–544 (2010)

    Article  MATH  Google Scholar 

  6. Harms, A., Bajwa, W.U., Calderbank, R.: A constrained random demodulator for sub-Nyquist sampling. IEEE Trans. Signal Process. 61(3), 707–723 (2013)

    Article  MathSciNet  Google Scholar 

  7. Zhao, Y., Wang, H., Zhuang, X., et al.: Frequency domain sensing system using random modulation pre-integrator. IET Sci. Meas. Technol. 7(3), 166–170 (2013)

    Article  Google Scholar 

  8. Mishali, M., Eldar, Y.C.: From theory to practice: sub-Nyquist sampling of sparse wideband analog signals. IEEE J. Sel. Top. Sign. Process. 4(2), 375–391 (2010)

    Article  Google Scholar 

  9. Eldar, Y.C., Levi, R., Cohen, A.: Clutter removal in Sub-Nyquist radar. IEEE Signal Process. Lett. 22(2), 177–181 (2015)

    Article  Google Scholar 

  10. Lexa, M.A., Davies, M.E., Thompson, J.S.: Reconciling compressive sampling systems for spectrally sparse continuous-time signals. IEEE Trans. Signal Process. 60(1), 155–171 (2012)

    Article  MathSciNet  Google Scholar 

  11. Shilian, Z., Xiaoniu, Y.: Wideband spectrum sensing in modulated wideband converter based cognitive radio system. In: 11th International Symposium on Communications and Information Technologies, pp. 114–119. IEEE Press, Hangzhou (2011)

    Google Scholar 

  12. Cohen, D., Akiva, A., Avraham, B., et al.: Distributed cooperative spectrum sensing from Sub-Nyquist samples for cognitive radios. In: 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 336–340. IEEE Press, Stockholm (2015)

    Google Scholar 

  13. Mishali, M., Eldar, Y.C.: Blind multiband signal reconstruction: compressed sensing for analog signals. IEEE Trans. Signal Process. 57(3), 993–1009 (2009)

    Article  MathSciNet  Google Scholar 

  14. Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process. 86(3), 572–588 (2006)

    Article  MATH  Google Scholar 

  15. Chen, J., Huo, X.: Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans. Signal Process. 54(12), 4634–4643 (2006)

    Article  MATH  Google Scholar 

  16. Blumensath, T., Davies, M.E.: Stagewise weak gradient pursuits. IEEE Trans. Signal Process. 57(11), 4333–4346 (2009)

    Article  MathSciNet  Google Scholar 

  17. Donoho, D.L., Tsaig, Y., Drori, I., et al.: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, P., Fan, Y., Huang, Z.T., et al.: Single channel spectrum sensing technique based on sub-Nyquist sampling. J. Natl. Univ. Defense Technol. 35(4), 121–127 (2013)

    Google Scholar 

  19. Landau, H.J.: Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117, 37–52 (1967)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This paper was supported by the National Natural Science Foundation of China (Grant No. 61561017), Open Sub-project of State Key Laboratory of Marine Resource Utilization in South China Sea (Grant No. 2016013B), Hainan Province Natural Science Foundation of China (Grant No. 617033), Doctoral Candidate Excellent Dissertation Cultivating Project of Hainan University, and Postgraduate Practice and Innovation Project of Hainan University. Oriented Project of State Key Laboratory of Marine Resource Utilization in South China Sea (Grant No. DX2017012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Z., Bai, Y., Zhao, Y., Zhang, Y. (2018). Support Recovery for Multiband Spectrum Sensing Based on Modulated Wideband Converter with SwSOMP Algorithm. In: Long, K., Leung, V., Zhang, H., Feng, Z., Li, Y., Zhang, Z. (eds) 5G for Future Wireless Networks. 5GWN 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-72823-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72823-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72822-3

  • Online ISBN: 978-3-319-72823-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics