Skip to main content

Clostridium difficile Biofilm

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AMIDPH,volume 1050))

Abstract

Clostridium difficile infection (CDI) is an important healthcare-associated disease worldwide, mainly occurring after antimicrobial therapy. Antibiotics administered to treat a number of infections can promote C. difficile colonization of the gastrointestinal tract and, thus, CDI. A rise in multidrug resistant clinical isolates to multiple antibiotics and their reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.

Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related increase in bacterial resistance that makes antibiotic therapy often ineffective. However, although the involvement of the C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI have not been extensively described.

Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AbdelKhalek A, Ashby CR, Patel BA et al (2016) In vitro antibacterial activity of rhodanine derivatives against pathogenic clinical isolates. PLoS One 11(10):e0164227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aldridge P, Paul R, Goymer P et al (2003) Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol 47:1695–1708

    Article  CAS  PubMed  Google Scholar 

  • Al-Hinai MA, Jones SW, Papoutsakis ET (2015) The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biol Rev 79:19–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves P, Castro J, Sousa C et al (2014) Gardnerella vaginalis outcompetes 29 other bacterial species isolated from patients with bacterial vaginosis, using in an in vitro biofilm formation model. J Infect Dis 210:593–596

    Article  PubMed  Google Scholar 

  • Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266

    Article  CAS  PubMed  Google Scholar 

  • Azriel S, Goren A, Rahav G et al (2015) The stringent response regulator DksA is required for Salmonella enteric Serovar Typhimurium growth in minimal medium, motility, biofilm formation, and intestinal colonization. Infect Immun 84:375–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Badet C, Quero F (2011) The in vitro effect of manuka honeys on growth and adherence of oral bacteria. Anaerobe 17:19–22

    Article  CAS  PubMed  Google Scholar 

  • Barbut F, Richard A, Hamadi K et al (2000) Epidemiology of recurrences or reinfections of Clostridium difficile-associated diarrhea. J Clin Microbiol 38:2386–2388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biazzo M, Cioncada R, Fiaschi L et al (2013) Diversity of cwp loci in clinical isolates of Clostridium difficile. J Med Microbiol 62:1444–1452

    Article  CAS  PubMed  Google Scholar 

  • Bordeleau E, Fortier LC, Malouin F et al (2011) c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylatecyclases and phosphodiesterases. PLoS Genet 7:e1002039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordeleau E, Purcell EB, Lafontaine DA et al (2015) Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol 197:819–832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borriello SP (1979) Clostridium difficile and its toxin in the gastrointestinal tract in health and disease. Res Clin Forums 1:33–35

    Google Scholar 

  • Borriello SP, Welch AR, Barclay FE et al (1988) Mucosal association by Clostridium difficile in the hamster gastrointestinal tract. J Med Microbiol 25:191–19629

    Article  CAS  PubMed  Google Scholar 

  • Boudry P, Gracia C, Monot M et al (2014) Pleiotropic role of the RNA chaperone protein Hfq in the human pathogen Clostridium difficile. J Bacteriol 196:3234–3248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouillaut L, Dubois T, Sonenshein AL et al (2015) Integration of metabolism and virulence in Clostridium difficile. Res Microbiol 166:375–383

    Article  CAS  PubMed  Google Scholar 

  • Buckley AM, Spencer J, Candlish D et al (2011) Infection of hamsters with the UK Clostridium difficile ribotype 027 outbreak strain R20291. J Med Microbiol 60:1174–1180

    Article  PubMed  PubMed Central  Google Scholar 

  • Butala M, Žgur-Bertok D, Busby SJW (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66(1):82–93

    Article  CAS  Google Scholar 

  • Cairns LS, Marlow VL, Bissett E et al (2013) A mechanical signal transmitted by the flagellum controls signalling in Bacillus subtilis. Mol Microbiol 90:6–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns LS, Hobley L, Stanley-Wall NR (2014) Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms. Mol Microbiol 93:587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter GP, Purdy D, Williams P et al (2005) Quorum sensing in Clostridium difficile: analysis of a luxS-type signalling system. J Med Microbiol 54:119–127

    Article  CAS  PubMed  Google Scholar 

  • Carter GP, Rood JI, Lyras D (2012) The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol 20:21–29

    Article  CAS  PubMed  Google Scholar 

  • Cerquetti M, Molinari A, Sebastianelli A et al (2000) Characterization of surface layer proteins from different Clostridium difficile clinical isolates. Microb Pathog 28:363–372

    Article  CAS  PubMed  Google Scholar 

  • Chao Y, Vogel J (2010) The role of Hfq in bacterial pathogens. Curr Opin Microbiol 13:24–33

    Article  CAS  PubMed  Google Scholar 

  • Chilton CH, Crowther GS, Freeman J et al (2014) Successful treatment of simulated Clostridium difficile infection in a human gut model by fidaxomicin first line and after vancomycin or metronidazole failure. J Antimicrob Chemother 69:451–462

    Article  CAS  PubMed  Google Scholar 

  • Ciofu O, Rojo-Molinero E, Macià MD et al (2017) Antibiotic treatment of biofilm infections. APMIS 125:304–319

    Article  PubMed  Google Scholar 

  • Crowther GS, Chilton CH, Todhunter SL et al (2014a) Comparison of planktonic and biofilm-associated communities of Clostridium difficile and indigenous gut microbiota in a triple-stage chemostat gut model. J Antimicrob Chemother 69:2137–2147

    Article  CAS  PubMed  Google Scholar 

  • Crowther GS, Chilton CH, Todhunter SL et al (2014b) Development and validation of a chemostat gut model to study both planktonic and biofilm modes of growth of Clostridium difficile and human microbiota. PLo SONE 9:e88396

    Article  CAS  Google Scholar 

  • Cummings JH, Antoine JM, Azpiroz F et al (2004) PASSCLAIM: gut health and immunity. Eur J Nutr 43:II118–II173

    Article  PubMed  CAS  Google Scholar 

  • Dapa T, Unnikrishnan M (2013) Biofilm formation by Clostridium difficile. Gut Microbes 4:397–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Ðapa T, Leuzzi R, Baban ST et al (2013) Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 195:545–555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dawson LF, Valiente E, Faulds-Pain A et al (2012) Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS One 7:e50527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Riva L, Willing SE, Tate EW et al (2011) Roles of cysteine proteases Cwp84 and Cwp13 in biogenesis of the cell wall of Clostridium difficile. J Bacteriol 193:3276–3285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Sordi L, Butt MA, Pye H et al (2015) Development of Photodynamic Antimicrobial Chemotherapy (PACT) for Clostridium difficile. PLoS One 10:e0135039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dineen SS, McBride SM, Sonenshein AL (2010) Integration of metabolism and virulence by Clostridium difficile CodY. J Bacteriol 192:5350–5362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donelli G (2006) Vascular catheter-related infection and sepsis. Surg Infect 7:S25–S27

    Article  Google Scholar 

  • Donelli G, Vuotto C, Cardines R et al (2012) Biofilm-growing intestinal anaerobic bacteria. FEMS Immunol Med Microbiol 65:318–325

    Article  CAS  PubMed  Google Scholar 

  • Dupont HL (2013) Diagnosis and management of Clostridium difficile infection. Clin Gastroenterol Hepatol 11:1216–1223

    Article  PubMed  Google Scholar 

  • Edwards AN, Nawrocki KL, McBride SM (2014) Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile. Infect Immun 82:4276–4291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fagan RP, Fairweather NF (2014) Biogenesis and functions of bacterial S-layers. Nat Rev Microbiol 12:211–222

    Article  CAS  PubMed  Google Scholar 

  • Faulds-Pain A, Twine SM, Vinogradov E et al (2014) The post-translational modification of the Clostridium difficile flagellin affects motility, cell surface properties and virulence. Mol Microbiol 94:272–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Gu H, Sudarsan N et al (2012) Identification of ligand analogues that control c-di-GMP riboswitches. ACS ChemBiol 7:1436–1443

    Article  CAS  Google Scholar 

  • Ganeshapillai J, Vinogradov E, Rousseau J et al (2008) Clostridium difficile cell-surface polysaccharides composed of pentaglycosyl and hexaglycosyl phosphate repeating units. Carbohydr Res 343:703e10

    Article  CAS  Google Scholar 

  • Ghosh S, Zhang P, Li YQ et al (2009) Superdormant spores of Bacillus species have elevated wet-heat resistance and temperature requirements for heat activation. J Bacteriol 191:5584–5591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil F, Paredes-Sabja D (2016) Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections. Future Microbiol 11:1179–1189

    Article  CAS  PubMed  Google Scholar 

  • Gil F, Pizarro-Guajardo M, Álvarez R (2015) Clostridium difficile recurrent infection: possible implication of TA systems. Future Microbiol 10:1649–1657

    Article  CAS  PubMed  Google Scholar 

  • Goldberg J (2002) Biofilms and antibiotic resistance: a genetic linkage. Trends Microbiol 10:264

    Article  CAS  Google Scholar 

  • Goulding D, Thompson H, Emerson J et al (2009) Distinctive profiles of infection and pathology in hamsters infected with Clostridium difficile strains 630 and B1. Infect Immun 77:5478–5485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall-Stoodley L, StoodleyP (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Hammond EN, Donkor ES, Brown CA (2014) Biofilm formation of Clostridium difficile and susceptibility to Manuka honey. BMC Complement Altern Med 14:329

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashem AA, Abd El Fadeal NM et al (2017) In vitro activities of vancomycin and linezolid against biofilm-producing methicillin-resistant staphylococci species isolated from catheter-related bloodstream infections from an Egyptian tertiary hospital. J Med Microbiol 66:744–752

    Article  PubMed  Google Scholar 

  • Heydorn A, Ersboll B, Hentzer M et al (2000) Experimental reproducibility in flow-chamber biofilms. Microbiology 146:2409–2415

    Article  CAS  PubMed  Google Scholar 

  • Hoiby N, Bjarnsholt T, Givskov M et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  CAS  Google Scholar 

  • Jimi S, Miyazaki M, Takata T et al (2017) Increased drug resistance of meticillin-resistant Staphylococcus aureus biofilms formed on a mouse dermal chip model. J Med Microbiol 66:542–550

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirby JM, Ahern H, Roberts AK et al (2009) Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile. J Biol Chem 284:34666–34673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klausen M, Aaes-Jørgensen A, Molin S et al (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61–68

    Article  CAS  PubMed  Google Scholar 

  • Koch B, Worm J, Jensen LE et al (2001) Carbon limitation induces s-dependent gene expression in Pseudomonas fluorescens in soil. Appl Environ Microbiol 67:3363–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulasakara H, Lee V, Brencic A et al (2006) Analysis of Pseudomonas aeruginosa diguanylatecyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci 103:2839–2844

    Article  PubMed  CAS  Google Scholar 

  • Lawley TD, Clare S, Walker AW et al (2009) Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect Immun 77:3661–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee ASY, Song KP (2005) LuxS/autoinducer-2 quorum sensing molecule regulates transcriptional virulence gene expression in Clostridium difficile. Biochem Biophys Res Commun 335:659–666

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel) 12:2519–2538

    Article  CAS  Google Scholar 

  • Lindsay D, von Holy A (2006) Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect 64:313–325

    Article  CAS  PubMed  Google Scholar 

  • Lipovsek S, Leitinger G, Rupnik M (2013) Ultrastructure of Clostridium difficile colonies. Anaerobe 24:66e70

    Article  CAS  Google Scholar 

  • Liu W, Røder HL, Madsen JS et al (2016) Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization. Front Microbiol 7:1366

    PubMed  PubMed Central  Google Scholar 

  • Lyra A, Forssten S, Rolny P et al (2012) Comparison of bacterial quantities in left and right colon biopsies and faeces. World J Gastroenterol 18:4404–4411

    Article  PubMed  PubMed Central  Google Scholar 

  • Macfarlane S, Dillon JF (2007) Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 102:1187–1196

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane S, Macfarlane GT (2006) Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl Environ Microbiol 72:6204–6211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35:180–187

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane S, Bahrami B, Macfarlane GT (2011) Mucosal biofilm communities in the human intestinal tract. Adv Appl Microbiol 75:111–143

    Article  CAS  PubMed  Google Scholar 

  • Machado D, Castro J, Palmeira-de-Oliveira A et al (2015) Bacterial vaginosis biofilms: challenges to current therapies and emerging solutions. Front Microbiol 6:152

    Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  • Maldarelli GA, De Masi L, von Rosenvinge EC et al (2014) Identification, immunogenicity and cross-reactivity of Type IV pilin and pilin-like proteins from Clostridium difficile. Pathog Dis 71:302–314

    Article  CAS  PubMed  Google Scholar 

  • Maldarelli GA, Piepenbrink KH, Scott AJ et al (2016) Type IV pili promote early biofilm formation by Clostridium difficile. Pathog Dis 74:ftw061

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mathur H, Rea MC, Cotter PD et al (2016) The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells. Gut Pathog 8:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meeker DG, Beenken KE, Mills WB et al (2016) Evaluation of antibiotics active against methicillin-resistant Staphylococcus aureus based on activity in an established biofilm. Antimicrob Agents Chemother 60:5688–5694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melville S, Craig L (2013) Type IV pili in Gram-Positive bacteria. Microbiol Mol Biol Rev 77:323–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhatre E, Monterrosa RG, Kovács ÁT (2014) From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. J Basic Microbiol 54:616–632

    Article  PubMed  Google Scholar 

  • Nale JY, Chutia M, Carr P et al (2016) ‘Get in Early’; biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages. Front Microbiol 7:1383

    Article  PubMed  PubMed Central  Google Scholar 

  • Nassif X, Beretti JL, Lowy J et al (1994) Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc Natl Acad Sci U S A 91:3769–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng KM, Ferreyra JA, Higginbottom SK et al (2013) Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:96–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normington C, Chilton C, Buckley A, et al (2017) Influence of gut microflora on C. difficile biofilm formation. In: Microbiology society annual conference, p P418

    Google Scholar 

  • Ofosu A (2016) Clostridium difficile infection: a review of current and emerging therapies. Ann Gastroenterol 29:147–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Owrangi B, Masters N, Vollmerhausen TL et al (2017) Comparison between virulence characteristics of dominant and non-dominant Escherichia coli strains of the gut and their interaction with Caco-2 cells. Microb Pathog 105:171–176

    Article  CAS  PubMed  Google Scholar 

  • Ozturk B, Gunay N, Ertugrul BM et al (2016) Effects of vancomycin, daptomycin, and tigecycline on coagulase-negative staphylococcus biofilm and bacterial viability within biofilm: an in vitro biofilm model. Can J Microbiol 62:735–743

    Article  CAS  PubMed  Google Scholar 

  • Pantaléon V, Bouttier S, Soavelomandroso AP et al (2014) Biofilms of Clostridium species. Anaerobe 30:193–198

    Article  PubMed  CAS  Google Scholar 

  • Pantaléon V, Soavelomandroso AP, Bouttier S et al (2015) The Clostridium difficile protease Cwp84 modulates both biofilm formation and cell- surface properties. PLoS One 10:1–20

    Article  CAS  Google Scholar 

  • Peng JS, Tsai WC, Chou CC (2002) Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int J Food Microbiol 77:11–18

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Jin D, Kim HB et al (2017) Update on antimicrobial resistance in Clostridium difficile: resistance mechanisms and antimicrobial susceptibility testing. J Clin Microbiol 55:1998–2008

    Article  PubMed  PubMed Central  Google Scholar 

  • Percival SL, Suleman L, Francolini I et al (2014) The effectiveness of photodynamic therapy on planktonic cells and biofilms and its role in wound healing. Future Microbiol 9:1083–1094

    Article  CAS  PubMed  Google Scholar 

  • Percival SL, Suleman L, Vuotto C et al (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64:323–334

    Article  PubMed  Google Scholar 

  • Pettit LJ, Browne HP, Yu L et al (2014) Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism. BMC Genomics 15:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piepenbrink KH, Maldarelli GA, de la Peña CF et al (2014) Structure of Clostridium difficile PilJ exhibits unprecedented divergence from known Type IV pilins. J Biol Chem 289:4334–4345

    Article  CAS  PubMed  Google Scholar 

  • Piepenbrink KH, Maldarelli GA, Martinez de la Peña CF et al (2015) Structural and evolutionary analyses show unique stabilization strategies in the Type IV pili of Clostridium difficile. Structure 23:385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrowski M, Karpiński P, Pituch H, van Belkum A, Obuch-Woszczatyński P (2017) Antimicrobial effects of Manuka honey on in vitro biofilm formation by Clostridium difficile. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/s10096-017-2980-1

  • Pizarro-Guajardo M, Calderón-Romero P, Castro-Córdova P et al (2016a) Ultrastructural variability of the exosporium layer of Clostridium difficile spores. Appl Environ Microbiol 82:2202–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizarro-Guajardo M, Calderón-Romero P, Paredes-Sabja D (2016b) Ultrastructure variability of the exosporium layer of Clostridium difficile spores from sporulating cultures and biofilms. Appl Environ Microbiol 82:5892–5898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plummer S, Weaver MA, Harris JC et al (2004) Clostridium difficile pilot study: effects of probiotic supplementation on the incidence of C .difficile. Int Microbiol 7:59–62

    PubMed  Google Scholar 

  • Purcell EB, McKee RW, McBride SM et al (2012) Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol 194:3307–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell EB, McKee RW, Bordeleau E et al (2016) Regulation of Type IV pili contributes to surface behaviours of historical and epidemic strains of Clostridium difficile. J Bacteriol 198:565–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell EB, McKee RW, Courson DS et al (2017) A nutrient-regulated cyclic diguanylate phosphodiesterase controls Clostridium difficile biofilm and toxin production during stationary phase. Infect Immun 85:IAI.00347–IAI.00317

    Article  Google Scholar 

  • Raponi G, Visconti V, Brunetti G et al (2014) Clostridium difficile infection and Candida colonization of the gut: is there a correlation? Clin Infect Dis 59:1648–1649

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro SM, Felício MR, Boas EV et al (2016) New frontiers for anti-biofilm drug development. Pharmacol Ther 160:133–144

    Article  CAS  PubMed  Google Scholar 

  • Römling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9:218–228

    Article  PubMed  CAS  Google Scholar 

  • Römling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272:541–561

    Article  PubMed  CAS  Google Scholar 

  • Rossi E, Cimdins A, Lüthje P et al (2017) “It’s a gut feeling” – Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit Rev Microbiol 9:1–30

    Google Scholar 

  • Rothenbacher FP, Suzuki M, Hurley JM et al (2012) Clostridium difficile MazF toxin exhibits selective, not global, mRNA cleavage. J Bacteriol 194:3464–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy R, Tiwari M, Donelli G et al (2017) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. https://doi.org/10.1080/21505594.2017.1313372

  • Sculean A, Aoki A, Romanos G et al (2015) Is photodynamic therapy an effective treatment for periodontal and peri-implant infections? Dent Clin N Am 59:831–858

    Article  PubMed  Google Scholar 

  • Sebaihia M, Wren BW, Mullany P et al (2006) The multidrug resistant pathogen Clostridium difficile has a highly mobile mosaic genome. Nat Genet 38:779–786

    Article  PubMed  CAS  Google Scholar 

  • Semenyuk EG, Laning ML, Foley J et al (2014) Spore formation and toxin production in Clostridium difficile biofilms. PLoS One 9:e87757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Semenyuk EG, Poroyko VA, Johnston PF et al (2015) Analysis of bacterial communities during Clostridium difficile infection in the mouse. Infect Immun 83:4383–4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta C, Mukherjee O, Chowdhury R (2016) Adherence to intestinal cells promotes biofilm formation in Vibrio cholerae. J Infect Dis 214:1571–1578

    Article  CAS  PubMed  Google Scholar 

  • Shah D, Zhang Z, Khodursky A et al (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silva JO, Martins Reis AC, Quesada-Gómez C et al (2014) In vitro effect of antibiotics on biofilm formation by Bacteroides fragilis group strains isolated from intestinal microbiota of dogs and their antimicrobial susceptibility. Anaerobe 28:24–28

    Article  CAS  PubMed  Google Scholar 

  • Slater, Unnkrishnan M (2015) Characterisation of LuxS dependent biofilm formation by Clostridium difficile. In: 5th international Clostridium difficile symposium, p P76

    Google Scholar 

  • Soavelomandroso AP, Bouttier S, Hoys S, Candela T, Janoir C (2015). Spatial organization of tissue-associated bacteria in a Clostridium difficile monoxenic mouse model.P95, 5th International Clostridium difficile Symposium. Bled, Slovenia

    Google Scholar 

  • Soutourina O (2017) RNA-based control mechanisms of Clostridium difficile. Curr Opin Microbiol 36:62–68

    Article  CAS  PubMed  Google Scholar 

  • Soutourina OA, Monot M, Boudry P et al (2013) Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet 9:e1003493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer J, Leuzzi R, Buckley A et al (2014) Vaccination against Clostridium difficile using toxin fragments: observations and analysis in animal models. Gut Microbes 5:23–22

    Article  Google Scholar 

  • Spigaglia P (2016) Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis 3:23–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spigaglia P, Barketi-Klai A, Collignon A et al (2013) Surface-layer (S-layer) of human and animal Clostridium difficile strains and their behaviour in adherence to epithelial cells and intestinal colonization. J Med Microbiol 62:1386–1393

    Article  PubMed  Google Scholar 

  • Stabler RA, He M, Dawson L et al (2009) Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 10(9):R102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stevenson E, Minton NP, Kuehne SA (2015) The role of flagella in Clostridium difficile pathogenicity. Trends Microbiol 23:1–8

    Article  CAS  Google Scholar 

  • Sudarsan N, Lee ER, Weinberg Z et al (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swidsinski A, Mendling W, Loening-Baucke V et al (2008) An adherent Gardnerella vaginalis biofilm persists on the vaginal epithelium after standard therapy with oral metronidazole. Am J Obstet Gynecol 198(97):e1–e6

    Google Scholar 

  • Swidsinski A, Loening-Baucke V, Mendling W et al (2014) Infection through structured polymicrobial Gardnerella biofilms (StPM-GB). Histol Histopathol 29:567–587

    PubMed  Google Scholar 

  • Tischler AD, Camilli A (2005) Cyclicdiguanylate regulates Vibrio cholera virulence gene expression. Infect Immun 73:5873–5882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trejo FM, Pérez PF, De Antoni GL (2010) Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro. Antonie Van Leeuwenhoek 98:19–29

    Article  CAS  PubMed  Google Scholar 

  • Twine SM, Reid CW, Aubry A et al (2009) Motility and flagellar glycosylation in Clostridium difficile. J Bacteriol 191:7050–7062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyerman JG, Ponciano JM, Joyce P et al (2013) The evolution of antibiotic susceptibility and resistance during the formation of Escherichia coli biofilms in the absence of antibiotics. BMC Evol Biol 13:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Valiente E, Bouché L, Hitchen P et al (2016) Role of glycosyltransferases modifying type B flagellin of emerging hypervirulent Clostridium difficile lineages and their impact on motility and biofilm formation. J Biol Chem 291:25450–25461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Leeuwen PT, van der Peet JM, Bikker FJ et al (2016) Interspecies Interactions between Clostridium difficile and Candida albicans. mSphere 1:e00187–e00116

    PubMed  PubMed Central  Google Scholar 

  • Varga JJ, Nguyen V, O'Brien DK et al (2006) Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Mol Microbiol 62:680–694

    Article  CAS  PubMed  Google Scholar 

  • Varga JJ, Therit B, Melville SB (2008) Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 76:4944–4951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlamakis H, Aguilar C, Losick R et al (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:945–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P et al (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuotto C, Moura I, Barbanti F et al (2016) Sub-inhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains. Pathog Dis 74:ftv114

    Article  PubMed  CAS  Google Scholar 

  • Walter BM, Rupnik M, Hodnik V et al (2014) The LexA regulated genes of the Clostridium difficile. BMC Microbiol 14:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walter BM, Cartman ST, Minton NP et al (2015) The SOS response master regulator LexA is associated with sporulation, motility and biofilm formation in Clostridium difficile. PLoS One 10:1–17

    CAS  Google Scholar 

  • Wen Y, Behiels E, Devreese B (2014) Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis 70:240–249

    Article  CAS  PubMed  Google Scholar 

  • Willing SE, Candela T, Shaw HA et al (2015) Clostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII. Mol Microbiol 96:596–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Ann Rev Microbiol 59:487–517

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Vuotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vuotto, C., Donelli, G., Buckley, A., Chilton, C. (2018). Clostridium difficile Biofilm. In: Mastrantonio, P., Rupnik, M. (eds) Updates on Clostridium difficile in Europe. Advances in Experimental Medicine and Biology(), vol 1050. Springer, Cham. https://doi.org/10.1007/978-3-319-72799-8_7

Download citation

Publish with us

Policies and ethics