Advertisement

Clostridium difficile Biofilm

  • Claudia Vuotto
  • Gianfranco Donelli
  • Anthony Buckley
  • Caroline Chilton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1050)

Abstract

Clostridium difficile infection (CDI) is an important healthcare-associated disease worldwide, mainly occurring after antimicrobial therapy. Antibiotics administered to treat a number of infections can promote C. difficile colonization of the gastrointestinal tract and, thus, CDI. A rise in multidrug resistant clinical isolates to multiple antibiotics and their reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.

Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related increase in bacterial resistance that makes antibiotic therapy often ineffective. However, although the involvement of the C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI have not been extensively described.

Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.

Keywords

Biofilm Clostridium difficile Genetic factors EPS matrix Adhesion 

References

  1. AbdelKhalek A, Ashby CR, Patel BA et al (2016) In vitro antibacterial activity of rhodanine derivatives against pathogenic clinical isolates. PLoS One 11(10):e0164227PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aldridge P, Paul R, Goymer P et al (2003) Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol 47:1695–1708PubMedCrossRefGoogle Scholar
  3. Al-Hinai MA, Jones SW, Papoutsakis ET (2015) The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biol Rev 79:19–37PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alves P, Castro J, Sousa C et al (2014) Gardnerella vaginalis outcompetes 29 other bacterial species isolated from patients with bacterial vaginosis, using in an in vitro biofilm formation model. J Infect Dis 210:593–596PubMedCrossRefGoogle Scholar
  5. Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266PubMedCrossRefGoogle Scholar
  6. Azriel S, Goren A, Rahav G et al (2015) The stringent response regulator DksA is required for Salmonella enteric Serovar Typhimurium growth in minimal medium, motility, biofilm formation, and intestinal colonization. Infect Immun 84:375–384PubMedPubMedCentralCrossRefGoogle Scholar
  7. Badet C, Quero F (2011) The in vitro effect of manuka honeys on growth and adherence of oral bacteria. Anaerobe 17:19–22PubMedCrossRefGoogle Scholar
  8. Barbut F, Richard A, Hamadi K et al (2000) Epidemiology of recurrences or reinfections of Clostridium difficile-associated diarrhea. J Clin Microbiol 38:2386–2388PubMedPubMedCentralGoogle Scholar
  9. Biazzo M, Cioncada R, Fiaschi L et al (2013) Diversity of cwp loci in clinical isolates of Clostridium difficile. J Med Microbiol 62:1444–1452PubMedCrossRefGoogle Scholar
  10. Bordeleau E, Fortier LC, Malouin F et al (2011) c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylatecyclases and phosphodiesterases. PLoS Genet 7:e1002039PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bordeleau E, Purcell EB, Lafontaine DA et al (2015) Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol 197:819–832PubMedPubMedCentralCrossRefGoogle Scholar
  12. Borriello SP (1979) Clostridium difficile and its toxin in the gastrointestinal tract in health and disease. Res Clin Forums 1:33–35Google Scholar
  13. Borriello SP, Welch AR, Barclay FE et al (1988) Mucosal association by Clostridium difficile in the hamster gastrointestinal tract. J Med Microbiol 25:191–19629PubMedCrossRefGoogle Scholar
  14. Boudry P, Gracia C, Monot M et al (2014) Pleiotropic role of the RNA chaperone protein Hfq in the human pathogen Clostridium difficile. J Bacteriol 196:3234–3248PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bouillaut L, Dubois T, Sonenshein AL et al (2015) Integration of metabolism and virulence in Clostridium difficile. Res Microbiol 166:375–383PubMedCrossRefGoogle Scholar
  16. Buckley AM, Spencer J, Candlish D et al (2011) Infection of hamsters with the UK Clostridium difficile ribotype 027 outbreak strain R20291. J Med Microbiol 60:1174–1180PubMedPubMedCentralCrossRefGoogle Scholar
  17. Butala M, Žgur-Bertok D, Busby SJW (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66(1):82–93CrossRefGoogle Scholar
  18. Cairns LS, Marlow VL, Bissett E et al (2013) A mechanical signal transmitted by the flagellum controls signalling in Bacillus subtilis. Mol Microbiol 90:6–21PubMedPubMedCentralGoogle Scholar
  19. Cairns LS, Hobley L, Stanley-Wall NR (2014) Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms. Mol Microbiol 93:587–598PubMedPubMedCentralCrossRefGoogle Scholar
  20. Carter GP, Purdy D, Williams P et al (2005) Quorum sensing in Clostridium difficile: analysis of a luxS-type signalling system. J Med Microbiol 54:119–127PubMedCrossRefGoogle Scholar
  21. Carter GP, Rood JI, Lyras D (2012) The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol 20:21–29PubMedCrossRefGoogle Scholar
  22. Cerquetti M, Molinari A, Sebastianelli A et al (2000) Characterization of surface layer proteins from different Clostridium difficile clinical isolates. Microb Pathog 28:363–372PubMedCrossRefGoogle Scholar
  23. Chao Y, Vogel J (2010) The role of Hfq in bacterial pathogens. Curr Opin Microbiol 13:24–33PubMedCrossRefGoogle Scholar
  24. Chilton CH, Crowther GS, Freeman J et al (2014) Successful treatment of simulated Clostridium difficile infection in a human gut model by fidaxomicin first line and after vancomycin or metronidazole failure. J Antimicrob Chemother 69:451–462PubMedCrossRefGoogle Scholar
  25. Ciofu O, Rojo-Molinero E, Macià MD et al (2017) Antibiotic treatment of biofilm infections. APMIS 125:304–319PubMedCrossRefGoogle Scholar
  26. Crowther GS, Chilton CH, Todhunter SL et al (2014a) Comparison of planktonic and biofilm-associated communities of Clostridium difficile and indigenous gut microbiota in a triple-stage chemostat gut model. J Antimicrob Chemother 69:2137–2147PubMedCrossRefGoogle Scholar
  27. Crowther GS, Chilton CH, Todhunter SL et al (2014b) Development and validation of a chemostat gut model to study both planktonic and biofilm modes of growth of Clostridium difficile and human microbiota. PLo SONE 9:e88396CrossRefGoogle Scholar
  28. Cummings JH, Antoine JM, Azpiroz F et al (2004) PASSCLAIM: gut health and immunity. Eur J Nutr 43:II118–II173PubMedCrossRefGoogle Scholar
  29. Dapa T, Unnikrishnan M (2013) Biofilm formation by Clostridium difficile. Gut Microbes 4:397–402PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ðapa T, Leuzzi R, Baban ST et al (2013) Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 195:545–555PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dawson LF, Valiente E, Faulds-Pain A et al (2012) Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS One 7:e50527PubMedPubMedCentralCrossRefGoogle Scholar
  32. de la Riva L, Willing SE, Tate EW et al (2011) Roles of cysteine proteases Cwp84 and Cwp13 in biogenesis of the cell wall of Clostridium difficile. J Bacteriol 193:3276–3285PubMedPubMedCentralCrossRefGoogle Scholar
  33. De Sordi L, Butt MA, Pye H et al (2015) Development of Photodynamic Antimicrobial Chemotherapy (PACT) for Clostridium difficile. PLoS One 10:e0135039PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dineen SS, McBride SM, Sonenshein AL (2010) Integration of metabolism and virulence by Clostridium difficile CodY. J Bacteriol 192:5350–5362PubMedPubMedCentralCrossRefGoogle Scholar
  35. Donelli G (2006) Vascular catheter-related infection and sepsis. Surg Infect 7:S25–S27CrossRefGoogle Scholar
  36. Donelli G, Vuotto C, Cardines R et al (2012) Biofilm-growing intestinal anaerobic bacteria. FEMS Immunol Med Microbiol 65:318–325PubMedCrossRefGoogle Scholar
  37. Dupont HL (2013) Diagnosis and management of Clostridium difficile infection. Clin Gastroenterol Hepatol 11:1216–1223PubMedCrossRefGoogle Scholar
  38. Edwards AN, Nawrocki KL, McBride SM (2014) Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile. Infect Immun 82:4276–4291PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fagan RP, Fairweather NF (2014) Biogenesis and functions of bacterial S-layers. Nat Rev Microbiol 12:211–222PubMedCrossRefGoogle Scholar
  40. Faulds-Pain A, Twine SM, Vinogradov E et al (2014) The post-translational modification of the Clostridium difficile flagellin affects motility, cell surface properties and virulence. Mol Microbiol 94:272–289PubMedPubMedCentralCrossRefGoogle Scholar
  41. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633PubMedCrossRefGoogle Scholar
  42. Furukawa K, Gu H, Sudarsan N et al (2012) Identification of ligand analogues that control c-di-GMP riboswitches. ACS ChemBiol 7:1436–1443CrossRefGoogle Scholar
  43. Ganeshapillai J, Vinogradov E, Rousseau J et al (2008) Clostridium difficile cell-surface polysaccharides composed of pentaglycosyl and hexaglycosyl phosphate repeating units. Carbohydr Res 343:703e10CrossRefGoogle Scholar
  44. Ghosh S, Zhang P, Li YQ et al (2009) Superdormant spores of Bacillus species have elevated wet-heat resistance and temperature requirements for heat activation. J Bacteriol 191:5584–5591PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gil F, Paredes-Sabja D (2016) Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections. Future Microbiol 11:1179–1189PubMedCrossRefGoogle Scholar
  46. Gil F, Pizarro-Guajardo M, Álvarez R (2015) Clostridium difficile recurrent infection: possible implication of TA systems. Future Microbiol 10:1649–1657PubMedCrossRefGoogle Scholar
  47. Goldberg J (2002) Biofilms and antibiotic resistance: a genetic linkage. Trends Microbiol 10:264CrossRefGoogle Scholar
  48. Goulding D, Thompson H, Emerson J et al (2009) Distinctive profiles of infection and pathology in hamsters infected with Clostridium difficile strains 630 and B1. Infect Immun 77:5478–5485PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hall-Stoodley L, StoodleyP (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043PubMedCrossRefGoogle Scholar
  50. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108PubMedCrossRefGoogle Scholar
  51. Hammond EN, Donkor ES, Brown CA (2014) Biofilm formation of Clostridium difficile and susceptibility to Manuka honey. BMC Complement Altern Med 14:329PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hashem AA, Abd El Fadeal NM et al (2017) In vitro activities of vancomycin and linezolid against biofilm-producing methicillin-resistant staphylococci species isolated from catheter-related bloodstream infections from an Egyptian tertiary hospital. J Med Microbiol 66:744–752PubMedCrossRefGoogle Scholar
  53. Heydorn A, Ersboll B, Hentzer M et al (2000) Experimental reproducibility in flow-chamber biofilms. Microbiology 146:2409–2415PubMedCrossRefGoogle Scholar
  54. Hoiby N, Bjarnsholt T, Givskov M et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332PubMedCrossRefGoogle Scholar
  55. Jimi S, Miyazaki M, Takata T et al (2017) Increased drug resistance of meticillin-resistant Staphylococcus aureus biofilms formed on a mouse dermal chip model. J Med Microbiol 66:542–550PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kirby JM, Ahern H, Roberts AK et al (2009) Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile. J Biol Chem 284:34666–34673PubMedPubMedCentralCrossRefGoogle Scholar
  57. Klausen M, Aaes-Jørgensen A, Molin S et al (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61–68PubMedCrossRefGoogle Scholar
  58. Koch B, Worm J, Jensen LE et al (2001) Carbon limitation induces s-dependent gene expression in Pseudomonas fluorescens in soil. Appl Environ Microbiol 67:3363–3370PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kulasakara H, Lee V, Brencic A et al (2006) Analysis of Pseudomonas aeruginosa diguanylatecyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci 103:2839–2844PubMedCrossRefGoogle Scholar
  60. Lawley TD, Clare S, Walker AW et al (2009) Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect Immun 77:3661–3669PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lee ASY, Song KP (2005) LuxS/autoinducer-2 quorum sensing molecule regulates transcriptional virulence gene expression in Clostridium difficile. Biochem Biophys Res Commun 335:659–666PubMedCrossRefGoogle Scholar
  62. Li YH, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel) 12:2519–2538CrossRefGoogle Scholar
  63. Lindsay D, von Holy A (2006) Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect 64:313–325PubMedCrossRefGoogle Scholar
  64. Lipovsek S, Leitinger G, Rupnik M (2013) Ultrastructure of Clostridium difficile colonies. Anaerobe 24:66e70CrossRefGoogle Scholar
  65. Liu W, Røder HL, Madsen JS et al (2016) Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization. Front Microbiol 7:1366PubMedPubMedCentralGoogle Scholar
  66. Lyra A, Forssten S, Rolny P et al (2012) Comparison of bacterial quantities in left and right colon biopsies and faeces. World J Gastroenterol 18:4404–4411PubMedPubMedCentralCrossRefGoogle Scholar
  67. Macfarlane S, Dillon JF (2007) Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 102:1187–1196PubMedCrossRefGoogle Scholar
  68. Macfarlane S, Macfarlane GT (2006) Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl Environ Microbiol 72:6204–6211PubMedPubMedCentralCrossRefGoogle Scholar
  69. Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35:180–187PubMedCrossRefGoogle Scholar
  70. Macfarlane S, Bahrami B, Macfarlane GT (2011) Mucosal biofilm communities in the human intestinal tract. Adv Appl Microbiol 75:111–143PubMedCrossRefGoogle Scholar
  71. Machado D, Castro J, Palmeira-de-Oliveira A et al (2015) Bacterial vaginosis biofilms: challenges to current therapies and emerging solutions. Front Microbiol 6:152Google Scholar
  72. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39PubMedCrossRefGoogle Scholar
  73. Maldarelli GA, De Masi L, von Rosenvinge EC et al (2014) Identification, immunogenicity and cross-reactivity of Type IV pilin and pilin-like proteins from Clostridium difficile. Pathog Dis 71:302–314PubMedPubMedCentralCrossRefGoogle Scholar
  74. Maldarelli GA, Piepenbrink KH, Scott AJ et al (2016) Type IV pili promote early biofilm formation by Clostridium difficile. Pathog Dis 74:ftw061PubMedCrossRefGoogle Scholar
  75. Mathur H, Rea MC, Cotter PD et al (2016) The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells. Gut Pathog 8:20PubMedPubMedCentralCrossRefGoogle Scholar
  76. Meeker DG, Beenken KE, Mills WB et al (2016) Evaluation of antibiotics active against methicillin-resistant Staphylococcus aureus based on activity in an established biofilm. Antimicrob Agents Chemother 60:5688–5694PubMedPubMedCentralCrossRefGoogle Scholar
  77. Melville S, Craig L (2013) Type IV pili in Gram-Positive bacteria. Microbiol Mol Biol Rev 77:323–341PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mhatre E, Monterrosa RG, Kovács ÁT (2014) From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. J Basic Microbiol 54:616–632PubMedCrossRefGoogle Scholar
  79. Nale JY, Chutia M, Carr P et al (2016) ‘Get in Early’; biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages. Front Microbiol 7:1383PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nassif X, Beretti JL, Lowy J et al (1994) Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc Natl Acad Sci U S A 91:3769–3773PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ng KM, Ferreyra JA, Higginbottom SK et al (2013) Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:96–99PubMedPubMedCentralCrossRefGoogle Scholar
  82. Normington C, Chilton C, Buckley A, et al (2017) Influence of gut microflora on C. difficile biofilm formation. In: Microbiology society annual conference, p P418Google Scholar
  83. Ofosu A (2016) Clostridium difficile infection: a review of current and emerging therapies. Ann Gastroenterol 29:147–154PubMedPubMedCentralCrossRefGoogle Scholar
  84. Owrangi B, Masters N, Vollmerhausen TL et al (2017) Comparison between virulence characteristics of dominant and non-dominant Escherichia coli strains of the gut and their interaction with Caco-2 cells. Microb Pathog 105:171–176PubMedCrossRefGoogle Scholar
  85. Ozturk B, Gunay N, Ertugrul BM et al (2016) Effects of vancomycin, daptomycin, and tigecycline on coagulase-negative staphylococcus biofilm and bacterial viability within biofilm: an in vitro biofilm model. Can J Microbiol 62:735–743PubMedCrossRefGoogle Scholar
  86. Pantaléon V, Bouttier S, Soavelomandroso AP et al (2014) Biofilms of Clostridium species. Anaerobe 30:193–198PubMedCrossRefGoogle Scholar
  87. Pantaléon V, Soavelomandroso AP, Bouttier S et al (2015) The Clostridium difficile protease Cwp84 modulates both biofilm formation and cell- surface properties. PLoS One 10:1–20CrossRefGoogle Scholar
  88. Peng JS, Tsai WC, Chou CC (2002) Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int J Food Microbiol 77:11–18PubMedCrossRefGoogle Scholar
  89. Peng Z, Jin D, Kim HB et al (2017) Update on antimicrobial resistance in Clostridium difficile: resistance mechanisms and antimicrobial susceptibility testing. J Clin Microbiol 55:1998–2008PubMedPubMedCentralCrossRefGoogle Scholar
  90. Percival SL, Suleman L, Francolini I et al (2014) The effectiveness of photodynamic therapy on planktonic cells and biofilms and its role in wound healing. Future Microbiol 9:1083–1094PubMedCrossRefGoogle Scholar
  91. Percival SL, Suleman L, Vuotto C et al (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64:323–334PubMedCrossRefGoogle Scholar
  92. Pettit LJ, Browne HP, Yu L et al (2014) Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism. BMC Genomics 15:160PubMedPubMedCentralCrossRefGoogle Scholar
  93. Piepenbrink KH, Maldarelli GA, de la Peña CF et al (2014) Structure of Clostridium difficile PilJ exhibits unprecedented divergence from known Type IV pilins. J Biol Chem 289:4334–4345PubMedCrossRefGoogle Scholar
  94. Piepenbrink KH, Maldarelli GA, Martinez de la Peña CF et al (2015) Structural and evolutionary analyses show unique stabilization strategies in the Type IV pili of Clostridium difficile. Structure 23:385–396PubMedPubMedCentralCrossRefGoogle Scholar
  95. Piotrowski M, Karpiński P, Pituch H, van Belkum A, Obuch-Woszczatyński P (2017) Antimicrobial effects of Manuka honey on in vitro biofilm formation by Clostridium difficile. Eur J Clin Microbiol Infect Dis.  https://doi.org/10.1007/s10096-017-2980-1
  96. Pizarro-Guajardo M, Calderón-Romero P, Castro-Córdova P et al (2016a) Ultrastructural variability of the exosporium layer of Clostridium difficile spores. Appl Environ Microbiol 82:2202–2209PubMedPubMedCentralCrossRefGoogle Scholar
  97. Pizarro-Guajardo M, Calderón-Romero P, Paredes-Sabja D (2016b) Ultrastructure variability of the exosporium layer of Clostridium difficile spores from sporulating cultures and biofilms. Appl Environ Microbiol 82:5892–5898PubMedPubMedCentralCrossRefGoogle Scholar
  98. Plummer S, Weaver MA, Harris JC et al (2004) Clostridium difficile pilot study: effects of probiotic supplementation on the incidence of C .difficile. Int Microbiol 7:59–62PubMedGoogle Scholar
  99. Purcell EB, McKee RW, McBride SM et al (2012) Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol 194:3307–3316PubMedPubMedCentralCrossRefGoogle Scholar
  100. Purcell EB, McKee RW, Bordeleau E et al (2016) Regulation of Type IV pili contributes to surface behaviours of historical and epidemic strains of Clostridium difficile. J Bacteriol 198:565–577PubMedPubMedCentralCrossRefGoogle Scholar
  101. Purcell EB, McKee RW, Courson DS et al (2017) A nutrient-regulated cyclic diguanylate phosphodiesterase controls Clostridium difficile biofilm and toxin production during stationary phase. Infect Immun 85:IAI.00347–IAI.00317CrossRefGoogle Scholar
  102. Raponi G, Visconti V, Brunetti G et al (2014) Clostridium difficile infection and Candida colonization of the gut: is there a correlation? Clin Infect Dis 59:1648–1649PubMedCrossRefGoogle Scholar
  103. Ribeiro SM, Felício MR, Boas EV et al (2016) New frontiers for anti-biofilm drug development. Pharmacol Ther 160:133–144PubMedCrossRefGoogle Scholar
  104. Römling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9:218–228PubMedCrossRefGoogle Scholar
  105. Römling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272:541–561PubMedCrossRefGoogle Scholar
  106. Rossi E, Cimdins A, Lüthje P et al (2017) “It’s a gut feeling” – Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit Rev Microbiol 9:1–30Google Scholar
  107. Rothenbacher FP, Suzuki M, Hurley JM et al (2012) Clostridium difficile MazF toxin exhibits selective, not global, mRNA cleavage. J Bacteriol 194:3464–3474PubMedPubMedCentralCrossRefGoogle Scholar
  108. Roy R, Tiwari M, Donelli G et al (2017) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence.  https://doi.org/10.1080/21505594.2017.1313372
  109. Sculean A, Aoki A, Romanos G et al (2015) Is photodynamic therapy an effective treatment for periodontal and peri-implant infections? Dent Clin N Am 59:831–858PubMedCrossRefGoogle Scholar
  110. Sebaihia M, Wren BW, Mullany P et al (2006) The multidrug resistant pathogen Clostridium difficile has a highly mobile mosaic genome. Nat Genet 38:779–786PubMedPubMedCentralCrossRefGoogle Scholar
  111. Semenyuk EG, Laning ML, Foley J et al (2014) Spore formation and toxin production in Clostridium difficile biofilms. PLoS One 9:e87757PubMedPubMedCentralCrossRefGoogle Scholar
  112. Semenyuk EG, Poroyko VA, Johnston PF et al (2015) Analysis of bacterial communities during Clostridium difficile infection in the mouse. Infect Immun 83:4383–4391PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sengupta C, Mukherjee O, Chowdhury R (2016) Adherence to intestinal cells promotes biofilm formation in Vibrio cholerae. J Infect Dis 214:1571–1578PubMedCrossRefGoogle Scholar
  114. Shah D, Zhang Z, Khodursky A et al (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53PubMedPubMedCentralCrossRefGoogle Scholar
  115. Silva JO, Martins Reis AC, Quesada-Gómez C et al (2014) In vitro effect of antibiotics on biofilm formation by Bacteroides fragilis group strains isolated from intestinal microbiota of dogs and their antimicrobial susceptibility. Anaerobe 28:24–28PubMedCrossRefGoogle Scholar
  116. Slater, Unnkrishnan M (2015) Characterisation of LuxS dependent biofilm formation by Clostridium difficile. In: 5th international Clostridium difficile symposium, p P76Google Scholar
  117. Soavelomandroso AP, Bouttier S, Hoys S, Candela T, Janoir C (2015). Spatial organization of tissue-associated bacteria in a Clostridium difficile monoxenic mouse model.P95, 5th International Clostridium difficile Symposium. Bled, SloveniaGoogle Scholar
  118. Soutourina O (2017) RNA-based control mechanisms of Clostridium difficile. Curr Opin Microbiol 36:62–68PubMedCrossRefGoogle Scholar
  119. Soutourina OA, Monot M, Boudry P et al (2013) Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet 9:e1003493PubMedPubMedCentralCrossRefGoogle Scholar
  120. Spencer J, Leuzzi R, Buckley A et al (2014) Vaccination against Clostridium difficile using toxin fragments: observations and analysis in animal models. Gut Microbes 5:23–22CrossRefGoogle Scholar
  121. Spigaglia P (2016) Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis 3:23–42PubMedPubMedCentralCrossRefGoogle Scholar
  122. Spigaglia P, Barketi-Klai A, Collignon A et al (2013) Surface-layer (S-layer) of human and animal Clostridium difficile strains and their behaviour in adherence to epithelial cells and intestinal colonization. J Med Microbiol 62:1386–1393PubMedCrossRefGoogle Scholar
  123. Stabler RA, He M, Dawson L et al (2009) Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 10(9):R102PubMedPubMedCentralCrossRefGoogle Scholar
  124. Stevenson E, Minton NP, Kuehne SA (2015) The role of flagella in Clostridium difficile pathogenicity. Trends Microbiol 23:1–8CrossRefGoogle Scholar
  125. Sudarsan N, Lee ER, Weinberg Z et al (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413PubMedPubMedCentralCrossRefGoogle Scholar
  126. Swidsinski A, Mendling W, Loening-Baucke V et al (2008) An adherent Gardnerella vaginalis biofilm persists on the vaginal epithelium after standard therapy with oral metronidazole. Am J Obstet Gynecol 198(97):e1–e6Google Scholar
  127. Swidsinski A, Loening-Baucke V, Mendling W et al (2014) Infection through structured polymicrobial Gardnerella biofilms (StPM-GB). Histol Histopathol 29:567–587PubMedGoogle Scholar
  128. Tischler AD, Camilli A (2005) Cyclicdiguanylate regulates Vibrio cholera virulence gene expression. Infect Immun 73:5873–5882PubMedPubMedCentralCrossRefGoogle Scholar
  129. Trejo FM, Pérez PF, De Antoni GL (2010) Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro. Antonie Van Leeuwenhoek 98:19–29PubMedCrossRefGoogle Scholar
  130. Twine SM, Reid CW, Aubry A et al (2009) Motility and flagellar glycosylation in Clostridium difficile. J Bacteriol 191:7050–7062PubMedPubMedCentralCrossRefGoogle Scholar
  131. Tyerman JG, Ponciano JM, Joyce P et al (2013) The evolution of antibiotic susceptibility and resistance during the formation of Escherichia coli biofilms in the absence of antibiotics. BMC Evol Biol 13:22PubMedPubMedCentralCrossRefGoogle Scholar
  132. Valiente E, Bouché L, Hitchen P et al (2016) Role of glycosyltransferases modifying type B flagellin of emerging hypervirulent Clostridium difficile lineages and their impact on motility and biofilm formation. J Biol Chem 291:25450–25461PubMedPubMedCentralCrossRefGoogle Scholar
  133. van Leeuwen PT, van der Peet JM, Bikker FJ et al (2016) Interspecies Interactions between Clostridium difficile and Candida albicans. mSphere 1:e00187–e00116PubMedPubMedCentralGoogle Scholar
  134. Varga JJ, Nguyen V, O'Brien DK et al (2006) Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Mol Microbiol 62:680–694PubMedCrossRefGoogle Scholar
  135. Varga JJ, Therit B, Melville SB (2008) Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 76:4944–4951PubMedPubMedCentralCrossRefGoogle Scholar
  136. Vlamakis H, Aguilar C, Losick R et al (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:945–953PubMedPubMedCentralCrossRefGoogle Scholar
  137. Vlamakis H, Chai Y, Beauregard P et al (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168PubMedPubMedCentralCrossRefGoogle Scholar
  138. Vuotto C, Moura I, Barbanti F et al (2016) Sub-inhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains. Pathog Dis 74:ftv114PubMedCrossRefGoogle Scholar
  139. Walter BM, Rupnik M, Hodnik V et al (2014) The LexA regulated genes of the Clostridium difficile. BMC Microbiol 14:88PubMedPubMedCentralCrossRefGoogle Scholar
  140. Walter BM, Cartman ST, Minton NP et al (2015) The SOS response master regulator LexA is associated with sporulation, motility and biofilm formation in Clostridium difficile. PLoS One 10:1–17Google Scholar
  141. Wen Y, Behiels E, Devreese B (2014) Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis 70:240–249PubMedCrossRefGoogle Scholar
  142. Willing SE, Candela T, Shaw HA et al (2015) Clostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII. Mol Microbiol 96:596–608PubMedPubMedCentralCrossRefGoogle Scholar
  143. Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Ann Rev Microbiol 59:487–517CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Claudia Vuotto
    • 1
  • Gianfranco Donelli
    • 1
  • Anthony Buckley
    • 2
  • Caroline Chilton
    • 2
  1. 1.Microbial Biofilm LaboratoryIRCCS Fondazione Santa LuciaRomeItaly
  2. 2.Healthcare Associated Infection Research Group, Section of Molecular Gastroenterology, Institute for Biomedical and Clinical SciencesUniversity of LeedsLeedsUK

Personalised recommendations