Advertisement

Non-human C. difficile Reservoirs and Sources: Animals, Food, Environment

  • Cristina Rodriguez Diaz
  • Christian Seyboldt
  • Maja Rupnik
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1050)

Abstract

Clostridium difficile is ubiquitous and is found in humans, animals and in variety of environments. The substantial overlap of ribotypes between all three main reservoirs suggests the extensive transmissions. Here we give the overview of European studies investigating farm, companion and wild animals, food and environments including water, soil, sediment, waste water treatment plants, biogas plants, air and households. Studies in Europe are more numerous especially in last couple of years, but are still fragmented in terms of countries, animal species or type of environment covered. Soil seem to be the habitat of divergent unusual lineages of C. difficile. But the most important aspect of animals and environment is their role in C. difficile transmissions and their potential as a source for human infection is discussed.

Keywords

Farm animals Pets Water Soil Environment Food Transmission 

References

  1. Al Saif N, Brazier JS (1996) The distribution of Clostridium difficile in the environment of South Wales. J Med Microbiol 45:133–137CrossRefGoogle Scholar
  2. Al-Saif NM, O’Neill GL, Magee JT et al (1998) PCR-ribotyping and pyrolysis mass spectrometry fingerprinting of environmental and hospital isolates of Clostridium difficile. J Med Microbiol 47:117–1121CrossRefGoogle Scholar
  3. Alvarez-Perez S, Blanco JL, Bouza E et al (2009) Prevalence of Clostridium difficile in diarrhoeic and non-diarrhoeic piglets. Vet Microbiol 137:302–305CrossRefGoogle Scholar
  4. Alvarez-Perez S, Blanco JL, Pelaez T et al (2013) High prevalence of the epidemic Clostridium difficile PCR ribotype 078 in Iberian free-range pigs. Res Vet Sci 95:358–361CrossRefGoogle Scholar
  5. Alvarez-Perez S, Blanco JL, Martinez-Nevado E et al (2014) Shedding of Clostridium difficile PCR-ribotype 078 by zoo animals, and report of an unstable metronidazole-resistant isolate from a zebra foal (Equus quagga burchellii). Vet Microbiol 169:218–222CrossRefGoogle Scholar
  6. Álvarez-Pérez S, Blanco JL, Peláez T et al (2015) Faecal shedding of antimicrobial-resistant Clostridium difficile strains by dogs. J Small Anim Pract 56:190–195CrossRefGoogle Scholar
  7. Álvarez-Pérez S, Blanco JL, Harmanus C et al (2017) Prevalence and characteristics of Clostridium perfringens and Clostridium difficile in dogs and cats attended in diverse veterinary clinics from the Madrid region. Anaerobe 48:47–55CrossRefGoogle Scholar
  8. Andres-Lasheras S, Bolea R, Mainar-Jaime RC et al (2017) Presence of Clostridium difficile in pig faecal samples and wild animal species associated with pig farms. J Appl Microbiol 122:462–472CrossRefGoogle Scholar
  9. Avbersek J, Janezic S, Pate M et al (2009) Diversity of Clostridium difficile in pigs and other animals in Slovenia. Anaerobe 15:252–255CrossRefGoogle Scholar
  10. Avbersek J, Pirs T, Pate M et al (2014) Clostridium difficile in goats and sheep in Slovenia: characterisation of strains and evidence of age-related shedding. Anaerobe 15:252–255CrossRefGoogle Scholar
  11. Bandelj P, Trilar T, Raenik J et al (2011) Zero prevalence of Clostridium difficile in wild passerine birds in Europe. FEMS Microbiol Lett 321:183–185CrossRefGoogle Scholar
  12. Bandelj P, Trilar T, Blagus R et al (2014) Prevalence and molecular characterization of Clostridium difficile isolated from European Barn Swallows (Hirundo rustica) during migration. BMC Vet Res 10:40CrossRefPubMedGoogle Scholar
  13. Bandelj P, Blagus R, Briski F et al (2016) Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms. Vet Res 47:41CrossRefPubMedGoogle Scholar
  14. Bandelj P, Golob M, Ocepek M et al (2017) Antimicrobial susceptibility patterns of Clostridium difficile isolates from family dairy farms. Zoonoses Public Health 64:213–221CrossRefGoogle Scholar
  15. Bauer MP, Kuijper EJ (2015) Potential sources of Clostridium difficile in human infection. Infect Dis Clin N Am 29:29–35CrossRefGoogle Scholar
  16. Bauer MP, Notermans DW, van Benthem BH et al (2011) Clostridium difficile infection in Europe: a hospital based survey. Lancet 377:63–73CrossRefPubMedGoogle Scholar
  17. Baverud V, Gustafsson A, Franklin A et al (2003) Clostridium difficile: prevalence in horses and environment, and antimicrobial susceptibility. Equine Vet J 35:465–471CrossRefGoogle Scholar
  18. Baverud V, Gustafsson A, Franklin A et al (2004) Clostridium difficile diarrhea: infection control in horses. Vet Clin North Am Equine Pract 20:615–630CrossRefGoogle Scholar
  19. Bojesen AM, Olsen KE, Bectelsen MF (2006) Fatal enterocolitis in Asian elephants (Elephas maximus) caused by Clostridium difficile. Vet Microbiol 116:329–335CrossRefGoogle Scholar
  20. Borriello SP, Honour P, Turner T et al (1983) Household pets as a potential reservoir for Clostridium difficile infection. J Clin Pathol 36:84–87CrossRefPubMedGoogle Scholar
  21. Bouttier S, Barc MC, Felix B et al (2010) Clostridium difficile in ground meat, France. Emerg Infect Dis 16:733–735CrossRefPubMedGoogle Scholar
  22. Burt SA, Siemeling L, Kuijper EJ et al (2012) Vermin on pig farms are vectors of Clostridium difficile PCR-ribotypes 078 and 045. Vet Microbiol 160:256–258CrossRefGoogle Scholar
  23. Cooper KK, Songer JG, Uzal FA (2013) Diagnosing clostridial enteric disease in poultry. J Vet Diagn Investig 25:314–327CrossRefGoogle Scholar
  24. Dabard J, Dubos F, Martinet L et al (1979) Experimental reproduction of neonatal diarrhea in young gnotobiotic hares simultaneously associated with Clostridium difficile and other Clostridium strains. Infect Immun 24:7–11PubMedCentralPubMedGoogle Scholar
  25. De Boer E, Zwartkruis-Nahuis A, Heuvelink A et al (2009) Clostridium difficile PCR-ribotype 078 toxinotype V found in diarrhoeal pigs indentical to isolates from affected humans. Environ Microbiol 144:561–511Google Scholar
  26. Diab SS, Songer G, Uzal FA (2013) Clostridium difficile infection in horses: a review. Vet Microbiol 167:42–49CrossRefGoogle Scholar
  27. Drigo I, Mazzolini E, Bacchin C et al (2015) Molecular characterization and antimicrobial susceptibility of Clostridium difficile isolated from rabbits raised for meat production. Vet Microbiol 181:303–307CrossRefGoogle Scholar
  28. Eckert C, Burghoffer B, Barbut F et al (2013) Contamination of ready to eat raw vegetables with Clostridium difficile in France. J Med Microbiol 62:1435–1438CrossRefGoogle Scholar
  29. Froschle B, Messelhäusser U, Höller C et al (2015) Fate of Clostridium botulinum and incidence of pathogenic clostridia in biogas processes. J Appl Microbiol 119:936–947CrossRefGoogle Scholar
  30. Gould LH, Limbago B (2010) Clostridium difficile in food domestic animals: a new foodborne pathogen? Clin Infect Dis 51:577–582CrossRefGoogle Scholar
  31. Hafiz S (1974) Clostridium difficile and its toxins. PhD thesis, Department of Microbiology, University of Leeds, UKGoogle Scholar
  32. Hammitt MC, Bueschel DM, Keel MK et al (2008) A possible role for Clostridium difficile in the etiology of calf enteritis. Vet Microbiol 127:343–352CrossRefGoogle Scholar
  33. Hargreaves KR, Colvin HV, Patel KV et al (2013) Genetically diverse Clostridium difficile strains harboring abundant prophages in an estuarine environment. Appl Environ Microbiol 79:6236–6243CrossRefPubMedGoogle Scholar
  34. Hensgens MP, Keessen EC, Squire MM et al (2012) Clostridium difficile infection in the community: a zoonotic disease? Clin Microbiol Infect 18:635–645CrossRefGoogle Scholar
  35. Hoffer E, Haechler H, Frei R et al (2010) Low occurrence of Clostridium difficile in faecal samples of healthy calves and pigs at slaughter and in minced meat in Switzerland. J Food Prot 73:973–975CrossRefGoogle Scholar
  36. Hopman NEM, Oorburg D, Sanders I et al (2011) High occurrence of various Clostridium difficile PCR-ribotypes in pigs arriving at the slaughterhouse. Vet Q 31:179–181CrossRefGoogle Scholar
  37. Hunter D, Bellhouse R, Baker K (1981) Clostridium difficile isolated from a goat. Vet Rec 109:291–292CrossRefGoogle Scholar
  38. Indra A, Lassing H, Baliko N et al (2009) Clostridium difficile: a new zoonotic agent? Wein Klin Wochensr 121:91–95CrossRefGoogle Scholar
  39. Janezic S, Ocepek M, Zidaric V et al (2012) Clostridium difficile genotypes other than ribotype 078 that are prevalent among human, animal and environmental isolates. BMC Microbiol 12:48CrossRefPubMedGoogle Scholar
  40. Janezic S, Potocnik M, Zidaric V et al (2016) Highly civergent Clostridium difficile strains isolated from the environment. PLoS One 11:e0167101CrossRefPubMedGoogle Scholar
  41. Jobstl M, Heuberger S, Indra A et al (2010) Clostridium difficile in raw products of animal origin. Int J Food Microbiol 138:172–175CrossRefGoogle Scholar
  42. Jones MA, Hunter D (1983) Isolation of Clostridium difficile from pigs. Vet Rec 112:253CrossRefGoogle Scholar
  43. Keessen EC, Donswijk CJ, Hol SP et al (2011a) Aerial dissemination of Clostridium difficile on a pig farm and its environment. Environ Res 111:1027–1032CrossRefGoogle Scholar
  44. Keessen EC, van den Berkt AJ, Haasjes NH et al (2011b) The relation between farm specific factors and prevalence of C. difficile in slaughter pigs. Vet Microbiol 154:130–134CrossRefGoogle Scholar
  45. Keessen EC, Hensgens MP, Spigaglia P et al (2013) Antimicrobial susceptibility profiles of human and piglet Clostridium difficile PCR-ribotype 078. Antimicrob Resist Infect Control 2:14CrossRefPubMedGoogle Scholar
  46. Kiss D, Bilkei G (2005) A new periparturient disease in Eastern Europe, Clostridium difficile causes postparturient sow losses. Theriongenology 63:17–23CrossRefGoogle Scholar
  47. Knetsch CW, Connor TR, Mutreja A et al (2014) Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveillance: Bulletin Europeen sur les maladies transmissibles = Eur Commun Dis Bull 19:20954CrossRefGoogle Scholar
  48. Knight DR, Squire MM, Collins DA et al (2016) Genome analysis of Clostridium difficile PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission. Front Microbiol 7:2138Google Scholar
  49. Koene MGJ, Mevius D, Wagenaar JA et al (2012) Clostridium difficile in Dutch animals: their presence, characteristics and similarities with human isolates. Clin Microbiol Infect 18:778–784CrossRefGoogle Scholar
  50. Kotila SM, Pitkänen T, Brazier J et al (2013) Clostridium difficile contamination of public tap water distribution system during a waterborne outbreak in Finland. Scand J Public Health 41:541–545CrossRefGoogle Scholar
  51. Lysons RJ, Hall GA, Lemcke RM et al (1980) Studies of organisms possibly implicated in swine dysentery. In: Proceedings of the 6th international Pig Veterinary SocietyGoogle Scholar
  52. McElroy MC, Hill M, Moloney G et al (2016) Typhlocolitis associated with C. difficile PCR-ribotypes 078 and 110 in neonatal piglets from a commercial Irish pig herd. Ir Vet J 69:10CrossRefPubMedGoogle Scholar
  53. Noren T, Johansson K, Unemo M (2014) Clostridium difficile PCR-ribotype 046 is common among neonatal pigs and humans in Sweden. Clin Microbiol Infect 20:O2–O6CrossRefGoogle Scholar
  54. Orden C, Blanco JL, Álvarez-Pérez S et al (2017a) Isolation of Clostridium difficile from dogs with digestive disorders, including stable metronidazole-resistant strains. Anaerobe 43:78–81CrossRefGoogle Scholar
  55. Orden C, Neila C, Blanco JL et al (2017b) Recreational sandboxes for children and dogs can be a source of epidemic ribotypes of Clostridium difficile. Zoonoses Public Health 7Google Scholar
  56. Ossiprandi MC, Buttrini M, Bottarelli E et al (2010) Preliminary molecular analysis of Clostridium difficile isolates from healthy horses in northern Italy. Comp Immunol Microbiol Infect Dis 33:e25–e29CrossRefGoogle Scholar
  57. Otten AM, Reid-Smith RJ, Fazil A et al (2010) Disease transmission model for community-associated Clostridium difficile infection. Epidemiol Infect 138:907–914CrossRefGoogle Scholar
  58. Pasquale V, Romano VJ, Rupnik M et al (2011) Isolation and characterization of Clostridium difficile from shellfish and marine environments. Folia Microbiol (Praha) 56:431–437CrossRefGoogle Scholar
  59. Pasquale V, Romano VJ, Rupnik M et al (2012) Occurrence of toxigenic Clostridium difficile in edible bivalve molluscs. Food Microbiol 31:309–312CrossRefGoogle Scholar
  60. Pelaez T, Alcala L, Blanco JL et al (2013) Characterization of swine isolates of Clostridium difficile in Spain: a potential source of epidemic multidrug resistant strains? Anaerobe 22:45–49CrossRefGoogle Scholar
  61. Perrin J, Buogo C, Gallusser A et al (1993) Intestinal carriage of Clostridium difficile in neonate dogs. Zentralbl Veterinarmed B 40:222–226Google Scholar
  62. Pirs T, Ocepek M, Rupnik M (2008) Isolation of Clostridium difficile from food animals in Slovenia. J Med Microbiol 57:790–792CrossRefGoogle Scholar
  63. Pirs T, Avbersek J, Zdouc I et al (2013) Antimicrobial susceptibility of animal and human isolates of C. difficile by broth microdilution. J Med Microbiol 62:1478–1485CrossRefGoogle Scholar
  64. Rieu-Lesme F, Fonty G (1999) Isolation of Clostridium difficile from the ruminal reservoir of newborn lambs. Vet Rec 145:501CrossRefGoogle Scholar
  65. Rodriguez C, Taminiau B, Van Broeck J et al (2012) Clostridium difficile in young farm animals and slaughter animals in Belgium. Anaerobe 18:621–625CrossRefGoogle Scholar
  66. Rodriguez C, Avesani V, Van Broeck J et al (2013) Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at slaughterhouse in Belgium. Int J Food Microbiol 166:256–262CrossRefGoogle Scholar
  67. Rodriguez C, Taminiau B, Brévers B et al (2014a) Carriage and acquisition rates of Clostridium difficile in hospitalized horses, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates. Vet Microbiol 172:309–317CrossRefGoogle Scholar
  68. Rodriguez C, Taminiau B, Avesani V et al (2014b) Multilocus sequence typing analysis and antibiotic resistance of Clostridium difficile strains, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates. Vet Microbiol 172:309–317CrossRefGoogle Scholar
  69. Rodriguez C, Taminiau B, Brévers B et al (2015) Faecal microbiota characterisation of horses using 16 rdna barcoded pyrosequencing, and carriage rate of Clostridium difficile at hospital admission. BMC Microbiol 15:181CrossRefPubMedGoogle Scholar
  70. Rodriguez C, Taminiau B, Van Broeck J et al (2016) Clostridium difficile in food and animals: a comprehensive review. Adv Exp Med Biol 4:65–92CrossRefGoogle Scholar
  71. Rodriguez-Palacios A, Lejeune JT (2011) Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile. Appl Environ Microbiol 77:3085–3091CrossRefPubMedGoogle Scholar
  72. Rodriguez-Palacios A, Borgmann S, Kline TR et al (2013) Clostridium difficile in foods and animals: history and measures to reduce exposure. Anim Health Res Rev 14:11–29CrossRefGoogle Scholar
  73. Romanazzi V, Bonetta S, Fornasero S et al (2016) Assessing methanobrevibacter smithii and Clostridium difficile as not conventional faecal indicators in effluents of a wastewater treatment plant integrated with sludge anaerobic digestion. J Environ Manag 184:170–177CrossRefGoogle Scholar
  74. Romano V, Albanese F, Dumontet S et al (2012a) Prevalence and genotypic characterization of Clostridium difficile from ruminants in Switzerland. Zoonoses Public Health 59:545–548CrossRefGoogle Scholar
  75. Romano V, Pasqualea V, Krovacekb K et al (2012b) Toxigenic Clostridium difficile PCR ribotypes from wastewater treatment plants in Southern Switzerland. Appl Environ Microbiol 78:6643–6646CrossRefPubMedGoogle Scholar
  76. Rupnik M (2007) Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease? Clin Microbiol Infect 13:457–459CrossRefGoogle Scholar
  77. Rupnik M (2010) Clostridium difficile: (re)emergence of zoonotic potential. Clin Infect Dis 51:583–584CrossRefGoogle Scholar
  78. Schmid A, Messelhausser U, Hormansdorfer S et al (2013) Occurrence of zoonotic Clostridia and Yersinia in healthy cattle. J Food Prot 76:1697–1703CrossRefGoogle Scholar
  79. Schneeberg A, Rupnik M, Neubauer H et al (2012) Prevalence and distribution of Clostridium difficile PCR ribotypes in cats and dogs from animal shelters in Thuringia, Germany. Anaerobe 18:484–488CrossRefGoogle Scholar
  80. Schneeberg A, Neubauer H, Schmoock G et al (2013a) Clostridium difficile genotypes in piglet populations in Germany. J Clin Microbiol 51:3796–3803CrossRefPubMedGoogle Scholar
  81. Schneeberg A, Neubauer H, Schomoock G et al (2013b) Presence of Clostridium difficile PCR ribotype clusters related to 033, 078 and 045 in diarrhoeiccalves in Germany. J Med Microbiol 62:1190–1198. Congress 1980, Copenhagen, p 231CrossRefGoogle Scholar
  82. Skraban J, Dzeroski S, Zenko B et al (2013) Changes of poultry faecal microbiota associated with Clostridium difficile colonisation. Vet Microbiol 165:416–424CrossRefGoogle Scholar
  83. Songer JG (2000) Infection of neonatal swine with Clostridium difficile. J Swine Health Prod 4:185–189Google Scholar
  84. Spigaglia P, Drigo I, Barbanti F et al (2015) Antibiotic resistance patterns and PCR-ribotyping of Clostridium difficile strains isolated from swine and dogs in Italy. Anaerobe 31:42–46CrossRefGoogle Scholar
  85. Squire MM, Riley TV (2013) Clostridium difficile infection in human and piglets: a “One health” opportunity. Curr Top Microbiol Immunol 365:299–314Google Scholar
  86. Steyer A, Gutiérrez-Aguirre I, Rački N et al (2015) The detection rate of enteric viruses and Clostridium difficile in a waste water treatment plant effluent. Food Environ Virol 7:164–172CrossRefGoogle Scholar
  87. Von Abercon SMM, Karlsson F, Wigh GT et al (2009) Low occurrence of Clostridium difficile in retail ground meat in Sweden. J Food Prot 72:1732–1734CrossRefGoogle Scholar
  88. Warriner K, Xu C, Habash M et al (2016) Dissemination of Clostridium difficile in food and the environment: significant sources of C. difficile community acquired infection? J Appl Microbiol 122:542–553CrossRefGoogle Scholar
  89. Weber A, Kroth P, Heil G (1989) The occurrence of Clostridium difficile in fecal samples of dogs and cats. Zentralbl Veterinarmed B 36:568–576Google Scholar
  90. Weese JS (2010) Clostridium difficile in food – innocent bystander or serious threat? Clin Microbiol Infect 16:3–10CrossRefGoogle Scholar
  91. Wetterwik KJ, Trowald-Wigh G, Fernström LL et al (2013) Clostridium difficile in faeces from healthy dogs and dogs with diarrhea. Acta Vet Scand 55:23CrossRefPubMedGoogle Scholar
  92. Zidaric V, Zemljic M, Janezic S et al (2008) High diversity of Clostridium difficile genotypes isolated from a single poultry farm producing replacement laying hens. Anaerobe 14:325–327CrossRefGoogle Scholar
  93. Zidaric V, Beigot S, Lapajne S et al (2010) The occurrence and high diversity of Clostridium difficile genotypes in rivers. Anaerobe 16(4):371–375CrossRefGoogle Scholar
  94. Zidaric V, Pardon B, Dos Vultos T et al (2012) Different antibiotic resistance and sporulation properties within multiclonal Clostridium difficile PCR ribotypes 078, 126, and 033 in a single calf farm. Appl Environ Microbiol 78:8515–8522CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Cristina Rodriguez Diaz
    • 1
  • Christian Seyboldt
    • 2
  • Maja Rupnik
    • 3
    • 4
  1. 1.Faculty of Veterinary Medicine, Department of Food Science, FARAHUniversity of LiègeLiègeBelgium
  2. 2.Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal HealthJenaGermany
  3. 3.Environment and FoodNational Laboratory for Health, NLZOHMariborSlovenia
  4. 4.Faculty of MedicineUniversity of MariborMariborSlovenia

Personalised recommendations