Immunization Strategies Against Clostridium difficile

  • Jean-François Bruxelle
  • Séverine Péchiné
  • Anne Collignon
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1050)

Abstract

C. difficile infection (CDI) is an important healthcare- but also community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients and prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to restore immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens, either toxins or colonization factors.

Keywords

C. difficile Toxins Colonization factors Passive immunizations Vaccines 

References

  1. Andersen KK, Strokappe NM, Hultberg A, Truusalu K, Smidt I, Mikelsaar R-H, Mikelsaar M, Verrips T, Hammarström L, Marcotte H (2015) Neutralization of Clostridium difficile toxin B mediated by engineered lactobacilli that produce single-domain antibodies. Infect Immun 84:395–406. https://doi.org/10.1128/IAI.00870-15 PubMedCrossRefGoogle Scholar
  2. Anosova NG, Brown AM, Li L, Liu N, Cole LE, Zhang J, Mehta H, Kleanthous H (2013) Systemic antibody responses induced by a twocomponent Clostridium difficile toxoid vaccine protect against C. difficile-associated disease in hamsters. J Med Microbiol 62:1394–1404. https://doi.org/10.1099/jmm.0.056796-0 CrossRefPubMedGoogle Scholar
  3. Anosova NG, Cole LE, Li L, Zhang J, Brown AM, Mundle S, Zhang J, Ray S, Ma F, Garrone P, Bertraminelli N, Kleanthous H, Anderson SF (2015) A combination of three fully human toxin A- and toxin B-specific monoclonal antibodies protects against challenge with highly virulent epidemic strains of Clostridium difficile in the hamster model. Clin Vaccine Immunol CVI 22:711–725. https://doi.org/10.1128/CVI.00763-14 CrossRefPubMedGoogle Scholar
  4. Aronsson B, Granström M, Möllby R, Nord CE (1985) Serum antibody response to Clostridium difficile toxins in patients with Clostridium difficile diarrhoea. Infection 13:97–101PubMedCrossRefGoogle Scholar
  5. Baban ST, Kuehne SA, Barketi-Klai A, Cartman ST, Kelly ML, Hardie KR, Kansau I, Collignon A, Minton NP (2013) The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain. PLoS One 8:e73026. https://doi.org/10.1371/journal.pone.0073026 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Babcock GJ, Broering TJ, Hernandez HJ, Mandell RB, Donahue K, Boatright N, Stack AM, Lowy I, Graziano R, Molrine D, Ambrosino DM, Thomas WD (2006) Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infect Immun 74:6339–6347. https://doi.org/10.1128/IAI.00982-06 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baliban SM, Michael A, Shammassian B, Mudakha S, Khan AS, Cocklin S, Zentner I, Latimer BP, Bouillaut L, Hunter M, Marx P, Sardesai NY, Welles SL, Jacobson JM, Weiner DB, Kutzler MA (2014) An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of Clostridium difficile induces protective antibody responses in vivo. Infect Immun 82:4080–4091. https://doi.org/10.1128/IAI.01950-14 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barketi-Klai A, Hoys S, Lambert-Bordes S, Collignon A, Kansau I (2011) Role of fibronectin-binding protein A in Clostridium difficile intestinal colonization. J Med Microbiol 60:1155–1161. https://doi.org/10.1099/jmm.0.029553-0 CrossRefPubMedGoogle Scholar
  9. Batah J, Denève-Larrazet C, Jolivot P-A, Kuehne S, Collignon A, Marvaud J-C, Kansau I (2016) Clostridium difficile flagella predominantly activate TLR5-linked NF-κB pathway in epithelial cells. Anaerobe 38:116–124. https://doi.org/10.1016/j.anaerobe.2016.01.002 CrossRefPubMedGoogle Scholar
  10. Batah J, Kobeissy H, Pham PTB, Denève-Larrazet C, Kuehne S, Collignon A, Janoir-Jouveshomme C, Marvaud J-C, Kansau I (2017) Clostridium difficile flagella induce a pro-inflammatory response in intestinal epithelium of mice in cooperation with toxins. Sci Rep 7:3256. https://doi.org/10.1038/s41598-017-03621-z CrossRefPubMedPubMedCentralGoogle Scholar
  11. Belyi IF, Varfolomeeva NA (2003) Construction of a fusion protein carrying antigenic determinants of enteric clostridial toxins. FEMS Microbiol Lett 225:325–329PubMedCrossRefGoogle Scholar
  12. Best EL, Freeman J, Wilcox MH (2012) Models for the study of Clostridium difficile infection. Gut Microbes 3:145–167. https://doi.org/10.4161/gmic.19526 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bézay N, Ayad A, Dubischar K, Firbas C, Hochreiter R, Kiermayr S, Kiss I, Pinl F, Jilma B, Westritschnig K (2016) Safety, immunogenicity and dose response of VLA84, a new vaccine candidate against Clostridium difficile, in healthy volunteers. Vaccine 34:2585–2592. https://doi.org/10.1016/j.vaccine.2016.03.098 CrossRefPubMedGoogle Scholar
  14. Brock JH, Arzabe R, Piñeiro A, Olivito AM (1977) The effect of trypsin and chymotrypsin on the bactericidal activity and specific antibody activity of bovine colostrum. Immunology 32:207–213PubMedPubMedCentralGoogle Scholar
  15. Broecker F, Hanske J, Martin CE, Baek JY, Wahlbrink A, Wojcik F, Hartmann L, Rademacher C, Anish C, Seeberger PH (2016a) Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans. Nat Commun 7:11224. https://doi.org/10.1038/ncomms11224 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Broecker F, Martin CE, Wegner E, Mattner J, Baek JY, Pereira CL, Anish C, Seeberger PH (2016b) Synthetic lipoteichoic acid glycans are potential vaccine candidates to protect from Clostridium difficile infections. Cell Chem Biol 23:1014–1022. https://doi.org/10.1016/j.chembiol.2016.07.009 CrossRefPubMedGoogle Scholar
  17. Bruxelle J-F, Mizrahi A, Hoys S, Collignon A, Janoir C, Péchiné S (2016) Immunogenic properties of the surface layer precursor of Clostridium difficile and vaccination assays in animal models. Anaerobe 37:78–84. https://doi.org/10.1016/j.anaerobe.2015.10.010 CrossRefPubMedGoogle Scholar
  18. Cafardi V, Biagini M, Martinelli M, Leuzzi R, Rubino JT, Cantini F, Norais N, Scarselli M, Serruto D, Unnikrishnan M (2013) Identification of a novel zinc metalloprotease through a global analysis of Clostridium difficile extracellular proteins. PLoS One 8:e81306. https://doi.org/10.1371/journal.pone.0081306 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Calabi E, Calabi F, Phillips AD, Fairweather NF (2002) Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect Immun 70:5770–5778PubMedPubMedCentralCrossRefGoogle Scholar
  20. Carter GP, Chakravorty A, Pham Nguyen TA, Mileto S, Schreiber F, Li L, Howarth P, Clare S, Cunningham B, Sambol SP, Cheknis A, Figueroa I, Johnson S, Gerding D, Rood JI, Dougan G, Lawley TD, Lyras D (2015) Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. MBio 6:e00551. https://doi.org/10.1128/mBio.00551-15 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cerquetti M, Pantosti A, Stefanelli P, Mastrantonio P (1992) Purification and characterization of an immunodominant 36 kDa antigen present on the cell surface of Clostridium difficile. Microb Pathog 13:271–279PubMedCrossRefGoogle Scholar
  22. Chapetón Montes D, Collignon A, Janoir C (2013) Influence of environmental conditions on the expression and the maturation process of the Clostridium difficile surface associated protease Cwp84. Anaerobe 19:79–82. https://doi.org/10.1016/j.anaerobe.2012.12.004 CrossRefPubMedGoogle Scholar
  23. Chen K, Cerutti A (2010) Vaccination strategies to promote mucosal antibody responses. Immunity 33:479–491. https://doi.org/10.1016/j.immuni.2010.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, Pepin J, Wilcox MH, Society for Healthcare Epidemiology of America, Infectious Diseases Society of America (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455. https://doi.org/10.1086/651706 CrossRefPubMedGoogle Scholar
  25. Corthier G, Muller MC, Wilkins TD, Lyerly D, L’Haridon R (1991) Protection against experimental pseudomembranous colitis in gnotobiotic mice by use of monoclonal antibodies against Clostridium difficile toxin A. Infect Immun 59:1192–1195PubMedPubMedCentralGoogle Scholar
  26. Cox AD, St Michael F, Aubry A, Cairns CM, Strong PCR, Hayes AC, Logan SM (2013) Investigating the candidacy of a lipoteichoic acid-based glycoconjugate as a vaccine to combat Clostridium difficile infection. Glycoconj J 30:843–855. https://doi.org/10.1007/s10719-013-9489-3 CrossRefPubMedGoogle Scholar
  27. Dang THT, de la Riva L, Fagan RP, Storck EM, Heal WP, Janoir C, Fairweather NF, Tate EW (2010) Chemical probes of surface layer biogenesis in Clostridium difficile. ACS Chem Biol 5:279–285. https://doi.org/10.1021/cb9002859 CrossRefPubMedGoogle Scholar
  28. Davies NL, Compson JE, MacKenzie B, O’Dowd VL, Oxbrow AKF, Heads JT, Turner A, Sarkar K, Dugdale SL, Jairaj M, Christodoulou L, Knight DEO, Cross AS, Hervé KJM, Tyson KL, Hailu H, Doyle CB, Ellis M, Kriek M, Cox M, Page MJT, Moore AR, Lightwood DJ, Humphreys DP (2013) A mixture of functionally oligoclonal humanized monoclonal antibodies that neutralize Clostridium difficile TcdA and TcdB with high levels of in vitro potency shows in vivo protection in a hamster infection model. Clin Vaccine Immunol 20:377–390. https://doi.org/10.1128/CVI.00625-12 CrossRefPubMedPubMedCentralGoogle Scholar
  29. de Bruyn G, Saleh J, Workman D, Pollak R, Elinoff V, Fraser NJ, Lefebvre G, Martens M, Mills RE, Nathan R, Trevino M, van Cleeff M, Foglia G, Ozol-Godfrey A, Patel DM, Pietrobon PJ, Gesser R, H-030-012 Clinical Investigator Study Team (2016) Defining the optimal formulation and schedule of a candidate toxoid vaccine against Clostridium difficile infection: a randomized phase 2 clinical trial. Vaccine 34:2170–2178. https://doi.org/10.1016/j.vaccine.2016.03.028 CrossRefPubMedGoogle Scholar
  30. de Rham O, Isliker H (1977) Proteolysis of bovine immunoglobulins. Int Arch Allergy Appl Immunol 55:61–69PubMedCrossRefGoogle Scholar
  31. Debast SB, Bauer MP, Kuijper EJ (2014) European society of clinical microbiology and infectious diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect 20(Suppl 2):1–26. https://doi.org/10.1111/1469-0691.12418 PubMedCrossRefGoogle Scholar
  32. Dingle T, Wee S, Mulvey GL, Greco A, Kitova EN, Sun J, Lin S, Klassen JS, Palcic MM, Ng KKS, Armstrong GD (2008) Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Glycobiology 18:698–706. https://doi.org/10.1093/glycob/cwn048 CrossRefPubMedGoogle Scholar
  33. Dingle TC, Mulvey GL, Armstrong GD (2011) Mutagenic analysis of the Clostridium difficile flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters. Infect Immun 79:4061–4067. https://doi.org/10.1128/IAI.05305-11 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Diraviyam T, He J-X, Chen C, Zhao B, Michael A, Zhang X (2016) Effect of passive immunotherapy against Clostridium difficile infection: a systematic review and meta-analysis. Immunotherapy 8:649–663. https://doi.org/10.2217/imt.16.8 PubMedCrossRefGoogle Scholar
  35. Drudy D, Calabi E, Kyne L, Sougioultzis S, Kelly E, Fairweather N, Kelly CP (2004) Human antibody response to surface layer proteins in Clostridium difficile infection. FEMS Immunol Med Microbiol 41:237–242. https://doi.org/10.1016/j.femsim.2004.03.007 PubMedCrossRefGoogle Scholar
  36. Eckert C, Emirian A, Le Monnier A, Cathala L, De Montclos H, Goret J, Berger P, Petit A, De Chevigny A, Jean-Pierre H, Nebbad B, Camiade S, Meckenstock R, Lalande V, Marchandin H, Barbut F (2015) Prevalence and pathogenicity of binary toxin-positive Clostridium difficile strains that do not produce toxins A and B. New Microbes New Infect 3:12–17. https://doi.org/10.1016/j.nmni.2014.10.003 PubMedCrossRefGoogle Scholar
  37. Eidhin DN, Ryan AW, Doyle RM, Walsh JB, Kelleher D (2006) Sequence and phylogenetic analysis of the gene for surface layer protein, slpA, from 14 PCR ribotypes of Clostridium difficile. J Med Microbiol 55:69–83. https://doi.org/10.1099/jmm.0.46204-0 PubMedCrossRefGoogle Scholar
  38. Fagarasan S, Honjo T (2003) Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 3:63–72. https://doi.org/10.1038/nri982 CrossRefPubMedGoogle Scholar
  39. Fernie DS, Thomson RO, Batty I, Walker PD (1983) Active and passive immunization to protect against antibiotic associated caecitis in hamsters. Dev Biol Stand 53:325–332PubMedGoogle Scholar
  40. Ganeshapillai J, Vinogradov E, Rousseau J, Weese JS, Monteiro MA (2008) Clostridium difficile cell-surface polysaccharides composed of pentaglycosyl and hexaglycosyl phosphate repeating units. Carbohydr Res 343:703–710. https://doi.org/10.1016/j.carres.2008.01.002 PubMedCrossRefGoogle Scholar
  41. Gardiner DF, Rosenberg T, Zaharatos J, Franco D, Ho DD (2009) A DNA vaccine targeting the receptor-binding domain of Clostridium difficile toxin A. Vaccine 27:3598–3604. https://doi.org/10.1016/j.vaccine.2009.03.058 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ghose C, Verhagen JM, Chen X, Yu J, Huang Y, Chenesseau O, Kelly CP, Ho DD (2013) Toll-like receptor 5-dependent immunogenicity and protective efficacy of a recombinant fusion protein vaccine containing the nontoxic domains of Clostridium difficile toxins A and B and Salmonella enterica serovar typhimurium flagellin in a mouse model of Clostridium difficile disease. Infect Immun 81:2190–2196. https://doi.org/10.1128/IAI.01074-12 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ghose C, Eugenis I, Edwards AN, Sun X, McBride SM, Ho DD (2016a) Immunogenicity and protective efficacy of Clostridium difficile spore proteins. Anaerobe 37:85–95. https://doi.org/10.1016/j.anaerobe.2015.12.001 PubMedCrossRefGoogle Scholar
  44. Ghose C, Eugenis I, Sun X, Edwards AN, McBride SM, Pride DT, Kelly CP, Ho DD (2016b) Immunogenicity and protective efficacy of recombinant Clostridium difficile flagellar protein FliC. Emerg Microbes Infect 5:e8. https://doi.org/10.1038/emi.2016.8 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Giannasca PJ, Zhang ZX, Lei WD, Boden JA, Giel MA, Monath TP, Thomas WD Jr (1999) Serum antitoxin antibodies mediate systemic and mucosal protection from Clostridium difficile disease in hamsters. Infect Immun 67:527–538PubMedPubMedCentralGoogle Scholar
  46. Greenberg RN, Marbury TC, Foglia G, Warny M (2012) Phase I dose finding studies of an adjuvanted Clostridium difficile toxoid vaccine. Vaccine 30:2245–2249. https://doi.org/10.1016/j.vaccine.2012.01.065 PubMedCrossRefGoogle Scholar
  47. Guo S, Yan W, McDonough SP, Lin N, Wu KJ, He H, Xiang H, Yang M, Moreira MAS, Chang Y-F (2015) The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model. Vaccine 33:1586–1595. https://doi.org/10.1016/j.vaccine.2015.02.006 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hennequin C, Porcheray F, Waligora-Dupriet A, Collignon A, Barc M, Bourlioux P, Karjalainen T (2001) GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiol Read Engl 147:87–96CrossRefGoogle Scholar
  49. Hennequin C, Janoir C, Barc M-C, Collignon A, Karjalainen T (2003) Identification and characterization of a fibronectin-binding protein from Clostridium difficile. Microbiol Read Engl 149:2779–2787CrossRefGoogle Scholar
  50. Hensbergen PJ, Klychnikov OI, Bakker D, van Winden VJ, Ras N, Kemp AC, Cordfunke RA, Dragan I, Deelder AM, Kuijper EJ et al (2014) A novel secreted metalloprotease (CD2830) from Clostridium difficile cleaves specific proline sequences in LPXTG cell surface proteins. Mol Cell Proteomics 13:1231–1244PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hernandez LD, Racine F, Xiao L, DiNunzio E, Hairston N, Sheth PR, Murgolo NJ, Therien AG (2015) Broad coverage of genetically diverse strains of Clostridium difficile by actoxumab and bezlotoxumab predicted by in vitro neutralization and epitope modeling. Antimicrob Agents Chemother 59:1052–1060. https://doi.org/10.1128/AAC.04433-14PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hong HA, Hitri K, Hosseini S, Kotowicz N, Bryan D, Mawas F, Wilkinson AJ, van Broekhoven A, Kearsey J, Cutting SM (2017) Mucosal antibodies to the C terminus of toxin A prevent colonization of Clostridium difficile. Infect Immun. 85(4):e01060-16. https://doi.org/10.1128/IAI.01060-16 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Islam J, Taylor AL, Rao K, Huffnagle G, Young VB, Rajkumar C, Cohen J, Papatheodorou P, Aronoff DM, Llewelyn MJ (2014) The role of the humoral immune response to Clostridium difficile toxins A and B in susceptibility to C. difficile infection: a case-control study. Anaerobe 27:82–86. https://doi.org/10.1016/j.anaerobe.2014.03.011 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jank T, Aktories K (2008) Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol 16:222–229. https://doi.org/10.1016/j.tim.2008.01.011 CrossRefPubMedGoogle Scholar
  55. Janoir C (2016) Virulence factors of Clostridium difficile and their role during infection. Anaerobe 37:13–24. https://doi.org/10.1016/j.anaerobe.2015.10.009 PubMedCrossRefGoogle Scholar
  56. Janoir C, Péchiné S, Grosdidier C, Collignon A (2007) Cwp84, a surface-associated protein of Clostridium difficile, is a cysteine protease with degrading activity on extracellular matrix proteins. J Bacteriol 189:7174–7180. https://doi.org/10.1128/JB.00578-07 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jin K, Wang S, Zhang C, Xiao Y, Lu S, Huang Z (2013) Protective antibody responses against Clostridium difficile elicited by a DNA vaccine expressing the enzymatic domain of toxin B. Hum Vaccines Immunother 9:63–73. https://doi.org/10.4161/hv.22434 CrossRefGoogle Scholar
  58. Johal SS, Lambert CP, Hammond J, James PD, Borriello SP, Mahida YR (2004) Colonic IgA producing cells and macrophages are reduced in recurrent and non-recurrent Clostridium difficile associated diarrhoea. J Clin Pathol 57:973–979. https://doi.org/10.1136/jcp.2003.015875 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Johnson S, Gerding DN, Janoff EN (1992) Systemic and mucosal antibody responses to toxin A in patients infected with Clostridium difficile. J Infect Dis 166:1287–1294PubMedCrossRefGoogle Scholar
  60. Kandalaft H, Hussack G, Aubry A, van Faassen H, Guan Y, Arbabi-Ghahroudi M, MacKenzie R, Logan SM, Tanha J (2015) Targeting surfacelayer proteins with single-domain antibodies: a potential therapeutic approach against Clostridium difficile-associated disease. Appl Microbiol Biotechnol 99:1–14. https://doi.org/10.1007/s00253-015-6594-1 CrossRefGoogle Scholar
  61. Karczewski J, Zorman J, Wang S, Miezeiewski M, Xie J, Soring K, Petrescu I, Rogers I, Thiriot DS, Cook JC, Chamberlin M, Xoconostle RF, Nahas DD, Joyce JG, Bodmer J-L, Heinrichs JH, Secore S (2014) Development of a recombinant toxin fragment vaccine for Clostridium difficile infection. Vaccine 32:2812–2818. https://doi.org/10.1016/j.vaccine.2014.02.026 PubMedCrossRefGoogle Scholar
  62. Karjalainen T, Waligora-Dupriet AJ, Cerquetti M, Spigaglia P, Maggioni A, Mauri P, Mastrantonio P (2001) Molecular and genomic analysis of genes encoding surface-anchored proteins from Clostridium difficile. Infect Immun 69:3442–3446. https://doi.org/10.1128/IAI.69.5.3442-3446.2001PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kelly CP, Pothoulakis C, Orellana J, LaMont JT (1992) Human colonic aspirates containing immunoglobulin A antibody to Clostridium difficile toxin A inhibit toxin A-receptor binding. Gastroenterology 102:35–40PubMedCrossRefGoogle Scholar
  64. Khan KH (2013) DNA vaccines: roles against diseases. Germs 3:26–35.  10.11599/germs.2013.1034 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kim PH, Iaconis JP, Rolfe RD (1987) Immunization of adult hamsters against Clostridium difficile-associated ileocecitis and transfer of protection to infant hamsters. Infect Immun 55:2984–2992PubMedPubMedCentralGoogle Scholar
  66. Kink JA, Williams JA (1998) Antibodies to recombinant Clostridium difficile toxins A and B are an effective treatment and prevent relapse of C. difficile-associated disease in a hamster model of infection. Infect Immun 66:2018–2025PubMedPubMedCentralGoogle Scholar
  67. Kirby JM, Ahern H, Roberts AK, Kumar V, Freeman Z, Acharya KR, Shone CC (2009) Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile. J Biol Chem 284:34666–34673. https://doi.org/10.1074/jbc.M109.051177 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kotloff KL, Wasserman SS, Losonsky GA, Thomas W Jr, Nichols R, Edelman R, Bridwell M, Monath TP (2001) Safety and immunogenicity of increasing doses of a Clostridium difficile toxoid vaccine administered to healthy adults. Infect Immun 69:988–995. https://doi.org/10.1128/IAI.69.2.988-995.2001PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kovacs-Simon A, Leuzzi R, Kasendra M, Minton N, Titball RW, Michell SL (2014) Lipoprotein CD0873 is a novel adhesin of Clostridium difficile. J Infect Dis 210:274–284. https://doi.org/10.1093/infdis/jiu070 PubMedCrossRefGoogle Scholar
  70. Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467:711–713. https://doi.org/10.1038/nature09397PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kuehne SA, Collery MM, Kelly ML, Cartman ST, Cockayne A, Minton NP (2014) Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J Infect Dis 209:83–86. https://doi.org/10.1093/infdis/jit426PubMedCrossRefGoogle Scholar
  72. Kyne L, Warny M, Qamar A, Kelly CP (2000) Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 342:390–397. https://doi.org/10.1056/NEJM200002103420604 PubMedCrossRefGoogle Scholar
  73. Kyne L, Warny M, Qamar A, Kelly CP (2001) Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet Lond Engl 357:189–193. https://doi.org/10.1016/S0140-6736(00)03592-3 CrossRefGoogle Scholar
  74. Lavelle EC (2005) Generation of improved mucosal vaccines by induction of innate immunity. Cell Mol Life Sci CMLS 62:2750–2770. https://doi.org/10.1007/s00018-005-5290-1 CrossRefPubMedGoogle Scholar
  75. Lawson PA, Citron DM, Tyrrell KL, Finegold SM (2016) Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe 40:95–99. https://doi.org/10.1016/j.anaerobe.2016.06.008 PubMedCrossRefGoogle Scholar
  76. Leav BA, Blair B, Leney M, Knauber M, Reilly C, Lowy I, Gerding DN, Kelly CP, Katchar K, Baxter R, Ambrosino D, Molrine D (2010) Serum antitoxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Vaccine 28:965–969. https://doi.org/10.1016/j.vaccine.2009.10.144PubMedCrossRefGoogle Scholar
  77. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerding DN, McDonald LC (2015) Burden of Clostridium difficile Infection in the United States. N Engl J Med 372:825–834. https://doi.org/10.1056/NEJMoa1408913 PubMedCrossRefGoogle Scholar
  78. Leung DYM, Kelly CP, Boguniewicz M, Pothoulakis C, LaMont JT, Flores A (1991) Treatment with intravenously administered gamma globulin of chronic relapsing colitis induced by Clostridium difficile toxin. J Pediatr 118:633–637. https://doi.org/10.1016/S0022-3476(05)83393-1 PubMedCrossRefGoogle Scholar
  79. Leuzzi R, Spencer J, Buckley A, Brettoni C, Martinelli M, Tulli L, Marchi S, Luzzi E, Irvine J, Candlish D, Veggi D, Pansegrau W, Fiaschi L, Savino S, Swennen E, Cakici O, Oviedo-Orta E, Giraldi M, Baudner B, D’Urzo N, Maione D, Soriani M, Rappuoli R, Pizza M, Douce GR, Scarselli M (2013) Protective efficacy induced by recombinant Clostridium difficile toxin fragments. Infect Immun 81:2851–2860. https://doi.org/10.1128/IAI.01341-12 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Libby JM, Wilkins TD (1982) Production of antitoxins to two toxins of Clostridium difficile and immunological comparison of the toxins by crossneutralization studies. Infect Immun 35:374–376PubMedPubMedCentralGoogle Scholar
  81. Libby JM, Jortner BS, Wilkins TD (1982) Effects of the two toxins of Clostridium difficile in antibiotic-associated cecitis in hamsters. Infect Immun 36:822–829PubMedPubMedCentralGoogle Scholar
  82. Lowy I, Molrine DC, Leav BA, Blair BM, Baxter R, Gerding DN, Nichol G, Thomas WD Jr, Leney M, Sloan S, Hay CA, Ambrosino DM (2010) Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med 362:197–205. https://doi.org/10.1056/NEJMoa0907635PubMedCrossRefGoogle Scholar
  83. Lyerly DDM, Johnson JL, Frey SM, Wilkins TD (1990) Vaccination against lethal Clostridium difficile enterocolitis with a nontoxic recombinant peptide of toxin A. Curr Microbiol 21:29–32. https://doi.org/10.1007/BF02090096CrossRefGoogle Scholar
  84. Lyerly DM, Bostwick EF, Binion SB, Wilkins TD (1991) Passive immunization of hamsters against disease caused by Clostridium difficile by use of bovine immunoglobulin G concentrate. Infect Immun 59:2215–2218PubMedPubMedCentralGoogle Scholar
  85. Lyras D, O’Connor JR, Howarth PM, Sambol SP, Carter GP, Phumoonna T, Poon R, Adams V, Vedantam G, Johnson S, Gerding DN, Rood JI (2009) Toxin B is essential for virulence of Clostridium difficile. Nature 458:1176–1179. https://doi.org/10.1038/nature07822 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Maldarelli GA, Matz H, Gao S, Chen K, Hamza T, Yfantis HG, Feng H, Donnenberg MS (2016) Pilin vaccination stimulates weak antibody responses and provides no protection in a C57Bl/6 murine model of acute Clostridium difficile infection. J Vaccines Vaccin. https://doi.org/10.4172/2157-7560.1000321
  87. Martin CE, Broecker F, Oberli MA, Komor J, Mattner J, Anish C, Seeberger PH (2013) Immunological evaluation of a synthetic Clostridium difficile oligosaccharide conjugate vaccine candidate and identification of a minimal epitope. J Am Chem Soc 135:9713–9722. https://doi.org/10.1021/ja401410y PubMedCrossRefGoogle Scholar
  88. Mattila E, Anttila V-J, Broas M, Marttila H, Poukka P, Kuusisto K, Pusa L, Sammalkorpi K, Dabek J, Koivurova O-P, Vähätalo M, Moilanen V, Widenius T (2008) A randomized, double-blind study comparing Clostridium difficile immune whey and metronidazole for recurrent Clostridium difficile-associated diarrhoea: efficacy and safety data of a prematurely interrupted trial. Scand J Infect Dis 40:702–708. https://doi.org/10.1080/00365540801964960 PubMedCrossRefGoogle Scholar
  89. Maynard-Smith M, Ahern H, McGlashan J, Nugent P, Ling R, Denton H, Coxon R, Landon J, Roberts A, Shone C (2014) Recombinant antigens based on toxins A and B of Clostridium difficile that evoke a potent toxin-neutralising immune response. Vaccine 32:700–705. https://doi.org/10.1016/j.vaccine.2013.11.099 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mizrahi A, Collignon A, Péchiné S (2014) Passive and active immunization strategies against Clostridium difficile infections: state of the art. Anaerobe 30:210–219. https://doi.org/10.1016/j.anaerobe.2014.07.006 PubMedCrossRefGoogle Scholar
  91. Monteiro MA (2016) The design of a Clostridium difficile carbohydrate-based vaccine. Methods Mol Biol Clifton NJ 1403:397–408. https://doi.org/10.1007/978-1-4939-3387-7_21 CrossRefGoogle Scholar
  92. Monteiro MA, Ma Z, Bertolo L, Jiao Y, Arroyo L, Hodgins D, Mallozzi M, Vedantam G, Sagermann M, Sundsmo J, Chow H (2013) Carbohydratebased Clostridium difficile vaccines. Expert Rev Vaccines 12:421–431. https://doi.org/10.1586/erv.13.9 PubMedCrossRefGoogle Scholar
  93. Negm OH, MacKenzie B, Hamed MR, Ahmad OAJ, Shone CC, Humphreys DP, Ravi Acharya K, Loscher CE, Marszalowska I, Lynch M, Wilcox MH, Monaghan TM (2017) Protective antibodies against Clostridium difficile are present in intravenous immunoglobulin and are retained in humans following its administration. Clin Exp Immunol 188:437–443. https://doi.org/10.1111/cei.12946 PubMedCrossRefGoogle Scholar
  94. Ní Eidhin DB, O’Brien JB, McCabe MS, Athié-Morales V, Kelleher DP (2008) Active immunization of hamsters against Clostridium difficile infection using surface-layer protein. FEMS Immunol Med Microbiol 52:207–218. https://doi.org/10.1111/j.1574-695X.2007.00363.x PubMedCrossRefGoogle Scholar
  95. O’Brien JB, McCabe MS, Athié-Morales V, McDonald GSA, Ní Eidhin DB, Kelleher DP (2005) Passive immunisation of hamsters against Clostridium difficile infection using antibodies to surface layer proteins. FEMS Microbiol Lett 246:199–205. https://doi.org/10.1016/j.femsle.2005.04.005 PubMedCrossRefGoogle Scholar
  96. Oberli MA, Hecht M-L, Bindschädler P, Adibekian A, Adam T, Seeberger PH (2011) A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. Chem Biol 18:580–588. https://doi.org/10.1016/j.chembiol.2011.03.009 PubMedCrossRefGoogle Scholar
  97. Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G, Brummelkamp TR, Aktories K (2011) Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci U S A 108:16422–16427. https://doi.org/10.1073/pnas.1109772108 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Péchiné S, Collignon A (2016) Immune responses induced by Clostridium difficile. Anaerobe 41:68–78. https://doi.org/10.1016/j.anaerobe.2016.04.014PubMedCrossRefGoogle Scholar
  99. Péchiné S, Gleizes A, Janoir C, Gorges-Kergot R, Barc M-C, Delmée M, Collignon A (2005a) Immunological properties of surface proteins of Clostridium difficile. J Med Microbiol 54:193–196PubMedCrossRefGoogle Scholar
  100. Péchiné S, Janoir C, Collignon A (2005b) Variability of Clostridium difficile surface proteins and specific serum antibody response in patients with Clostridium difficile-associated disease. J Clin Microbiol 43:5018–5025. https://doi.org/10.1128/JCM.43.10.5018-5025.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Péchiné S, Janoir C, Boureau H, Gleizes A, Tsapis N, Hoys S, Fattal E, Collignon A (2007) Diminished intestinal colonization by Clostridium difficile and immune response in mice after mucosal immunization with surface proteins of Clostridium difficile. Vaccine 25:3946–3954. https://doi.org/10.1016/j.vaccine.2007.02.055PubMedCrossRefGoogle Scholar
  102. Péchiné S, Denève C, Le Monnier A, Hoys S, Janoir C, Collignon A (2011) Immunization of hamsters against Clostridium difficile infection using the Cwp84 protease as an antigen. FEMS Immunol Med Microbiol 63:73–81. https://doi.org/10.1111/j.1574-695X.2011.00832.x PubMedCrossRefGoogle Scholar
  103. Péchiné S, Hennequin C, Boursier C, Hoys S, Collignon A (2013) Immunization using GroEL decreases Clostridium difficile intestinal colonization. PLoS One 8:e81112. https://doi.org/10.1371/journal.pone.0081112 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Péchiné S, Janoir C, Collignon A (2017) Emerging monoclonal antibodies against Clostridium difficile infection. Expert Opin Biol Ther 17:415–427. https://doi.org/10.1080/14712598.2017.1300655 PubMedCrossRefGoogle Scholar
  105. Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR (1997) Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407PubMedPubMedCentralGoogle Scholar
  106. Permpoonpattana P, Hong HA, Phetcharaburanin J, Huang J-M, Cook J, Fairweather NF, Cutting SM (2011) Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B. Infect Immun 79:2295–2302. https://doi.org/10.1128/IAI.00130-11 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Popoff MR, Geny B (2011) Rho/Ras-GTPase-dependent and -independent activity of clostridial glucosylating toxins. J Med Microbiol 60:1057–1069. https://doi.org/10.1099/jmm.0.029314-0 PubMedCrossRefGoogle Scholar
  108. Qiu H, Cassan R, Johnstone D, Han X, Joyee AG, McQuoid M, Masi A, Merluza J, Hrehorak B, Reid R, Kennedy K, Tighe B, Rak C, Leonhardt M, Dupas B, Saward L, Berry JD, Nykiforuk CL (2016) Novel Clostridium difficile anti-toxin (TcdA and TcdB) humanized monoclonal antibodies demonstrate in vitro neutralization across a broad spectrum of clinical strains and in vivo potency in a hamster spore challenge model. PLoS One 11:e0157970. https://doi.org/10.1371/journal.pone.0157970 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Roberts A, McGlashan J, Al-Abdulla I, Ling R, Denton H, Green S, Coxon R, Landon J, Shone C (2012) Development and evaluation of an ovine antibody-based platform for treatment of Clostridium difficile infection. Infect Immun 80:875–882. https://doi.org/10.1128/IAI.05684-11 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Romano MR, Leuzzi R, Cappelletti E, Tontini M, Nilo A, Proietti D, Berti F, Costantino P, Adamo R, Scarselli M (2014) Recombinant Clostridium difficile toxin fragments as carrier protein for PSII surface polysaccharide preserve their neutralizing activity. Toxins 6:1385–1396. https://doi.org/10.3390/toxins6041385 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ryan ET, Butterton JR, Smith RN, Carroll PA, Crean TI, Calderwood SB (1997) Protective immunity against Clostridium difficile toxin A induced by oral immunization with a live, attenuated Vibrio cholerae vector strain. Infect Immun 65:2941–2949PubMedPubMedCentralGoogle Scholar
  112. Ryan A, Lynch M, Smith SM, Amu S, Nel HJ, McCoy CE, Dowling JK, Draper E, O’Reilly V, McCarthy C, O’Brien J, Ní Eidhin D, O’Connell MJ, Keogh B, Morton CO, Rogers TR, Fallon PG, O’Neill LA, Kelleher D, Loscher CE (2011) A role for TLR4 in Clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog 7:e1002076. https://doi.org/10.1371/journal.ppat.1002076 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Saade F, Petrovsky N (2012) Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 11:189–209. https://doi.org/10.1586/erv.11.188 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Sauerborn M, Leukel P, von Eichel-Streiber C (1997) The C-terminal ligand-binding domain of Clostridium difficile toxin A (TcdA) abrogates TcdAspecific binding to cells and prevents mouse lethality. FEMS Microbiol Lett 155:45–54PubMedCrossRefGoogle Scholar
  115. Savelkoul HFJ, Ferro VA, Strioga MM, Schijns VEJC (2015) Choice and design of adjuvants for parenteral and mucosal vaccines. Vaccine 3:148–171. https://doi.org/10.3390/vaccines3010148 CrossRefGoogle Scholar
  116. Schmidt DJ, Beamer G, Tremblay JM, Steele JA, Kim HB, Wang Y, Debatis M, Sun X, Kashentseva EA, Dmitriev IP, Curiel DT, Shoemaker CB, Tzipori S (2016) A tetraspecific VHH-based neutralizing antibody modifies disease outcome in three animal models of Clostridium difficile infection. Clin Vaccine Immunol CVI 23:774–784. https://doi.org/10.1128/CVI.00730-15 PubMedCrossRefGoogle Scholar
  117. Schwan C, Stecher B, Tzivelekidis T, van Ham M, Rohde M, Hardt W-D, Wehland J, Aktories K (2009) Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 5:e1000626. https://doi.org/10.1371/journal.ppat.1000626PubMedPubMedCentralCrossRefGoogle Scholar
  118. Schwan C, Kruppke AS, Nölke T, Schumacher L, Koch-Nolte F, Kudryashev M, Stahlberg H, Aktories K (2014) Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proc Natl Acad Sci U S A 111:2313–2318. https://doi.org/10.1073/pnas.1311589111PubMedPubMedCentralCrossRefGoogle Scholar
  119. Secore S, Wang S, Doughtry J, Xie J, Miezeiewski M, Rustandi RR, Horton M, Xoconostle R, Wang B, Lancaster C, Kristopeit A, Wang S-C, Christanti S, Vitelli S, Gentile M-P, Goerke A, Skinner J, Strable E, Thiriot DS, Bodmer J-L, Heinrichs JH (2017) Development of a novel vaccine containing binary toxin for the prevention of Clostridium difficile disease with enhanced efficacy against NAP1 strains. PLoS One 12:e0170640. https://doi.org/10.1371/journal.pone.0170640 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Senoh M, Iwaki M, Yamamoto A, Kato H, Fukuda T, Shibayama K (2015) Inhibition of adhesion of Clostridium difficile to human intestinal cells after treatment with serum and intestinal fluid isolated from mice immunized with nontoxigenic C. difficile membrane fraction. Microb Pathog 81:1–5. https://doi.org/10.1016/j.micpath.2015.03.001 PubMedCrossRefGoogle Scholar
  121. Seregin SS, Aldhamen YA, Rastall DPW, Godbehere S, Amalfitano A (2012) Adenovirus-based vaccination against Clostridium difficile toxin A allows for rapid humoral immunity and complete protection from toxin A lethal challenge in mice. Vaccine 30:1492–1501. https://doi.org/10.1016/j.vaccine.2011.12.064 PubMedCrossRefGoogle Scholar
  122. Sheldon E, Kitchin N, Peng Y, Eiden J, Gruber W, Johnson E, Jansen KU, Pride MW, Pedneault L (2016) A phase 1, placebo-controlled, randomized study of the safety, tolerability, and immunogenicity of a Clostridium difficile vaccine administered with or without aluminum hydroxide in healthy adults. Vaccine 34:2082–2091. https://doi.org/10.1016/j.vaccine.2016.03.010 PubMedCrossRefGoogle Scholar
  123. Shields K, Araujo-Castillo RV, Theethira TG, Alonso CD, Kelly CP (2015) Recurrent Clostridium difficile infection: from colonization to cure. Anaerobe 34:59–73. https://doi.org/10.1016/j.anaerobe.2015.04.012PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sougioultzis S, Kyne L, Drudy D, Keates S, Maroo S, Pothoulakis C, Giannasca PJ, Lee CK, Warny M, Monath TP, Kelly CP (2005) Clostridium difficile toxoid vaccine in recurrent C. difficile-associated diarrhea. Gastroenterology 128:764–770PubMedCrossRefGoogle Scholar
  125. Spencer J, Leuzzi R, Buckley A, Irvine J, Candlish D, Scarselli M, Douce GR (2014) Vaccination against Clostridium difficile using toxin fragments: observations and analysis in animal models. Gut Microbes 5:225–232. https://doi.org/10.4161/gmic.27712 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Stevenson E, Minton NP, Kuehne SA (2015) The role of flagella in Clostridium difficile pathogenicity. Trends Microbiol 23:275–282. https://doi.org/10.1016/j.tim.2015.01.004 PubMedCrossRefGoogle Scholar
  127. Tasteyre A, Karjalainen T, Avesani V, Delmée M, Collignon A, Bourlioux P, Barc MC (2000) Phenotypic and genotypic diversity of the Flagellin gene (fliC) among Clostridium difficile isolates from different serogroups. J Clin Microbiol 38:3179–3186PubMedPubMedCentralGoogle Scholar
  128. Tasteyre A, Barc MC, Collignon A, Boureau H, Karjalainen T (2001) Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect Immun 69:7937–7940. https://doi.org/10.1128/IAI.69.12.7937-7940.2001PubMedPubMedCentralCrossRefGoogle Scholar
  129. Taylor CP, Tummala S, Molrine D, Davidson L, Farrell RJ, Lembo A, Hibberd PL, Lowy I, Kelly CP (2008) Open-label, dose escalation phase I study in healthy volunteers to evaluate the safety and pharmacokinetics of a human monoclonal antibody to Clostridium difficile toxin A. Vaccine 26:3404–3409. https://doi.org/10.1016/j.vaccine.2008.04.042 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Tian J-H, Fuhrmann SR, Kluepfel-Stahl S, Carman RJ, Ellingsworth L, Flyer DC (2012) A novel fusion protein containing the receptor binding domains of C. difficile toxin A and toxin B elicits protective immunity against lethal toxin and spore challenge in preclinical efficacy models. Vaccine 30:4249–4258. https://doi.org/10.1016/j.vaccine.2012.04.045PubMedCrossRefGoogle Scholar
  131. Tian J-H, Glenn G, Flyer D, Zhou B, Liu Y, Sullivan E, Wu H, Cummings JF, Elllingsworth L, Smith G (2017) Clostridium difficile chimeric toxin receptor binding domain vaccine induced protection against different strains in active and passive challenge models. Vaccine 35(33):4079–4087. https://doi.org/10.1016/j.vaccine.2017.06.062 PubMedCrossRefGoogle Scholar
  132. Torres JF, Lyerly DM, Hill JE, Monath TP (1995) Evaluation of formalin-inactivated Clostridium difficile vaccines administered by parenteral and mucosal routes of immunization in hamsters. Infect Immun 63:4619–4627PubMedPubMedCentralGoogle Scholar
  133. Tulli L, Marchi S, Petracca R, Shaw HA, Fairweather NF, Scarselli M, Soriani M, Leuzzi R (2013) CbpA: a novel surface exposed adhesin of Clostridium difficile targeting human collagen: collagen binding protein of Clostridium difficile. Cell Microbiol 15:1674–1687. https://doi.org/10.1111/cmi.12139 CrossRefPubMedGoogle Scholar
  134. Unger M, Eichhoff AM, Schumacher L, Strysio M, Menzel S, Schwan C, Alzogaray V, Zylberman V, Seman M, Brandner J, Rohde H, Zhu K, Haag F, Mittrücker H-W, Goldbaum F, Aktories K, Koch-Nolte F (2015) Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT. Sci Rep 5:7850. https://doi.org/10.1038/srep07850 PubMedPubMedCentralCrossRefGoogle Scholar
  135. van Dissel JT, de Groot N, Hensgens CM, Numan S, Kuijper EJ, Veldkamp P, van ’t Wout J (2005) Bovine antibody-enriched whey to aid in the prevention of a relapse of Clostridium difficile-associated diarrhoea: preclinical and preliminary clinical data. J Med Microbiol 54:197–205PubMedCrossRefGoogle Scholar
  136. van Dorp SM, Kinross P, Gastmeier P, Behnke M, Kola A, Delmée M, Pavelkovich A, Mentula S, Barbut F, Hajdu A, Ingebretsen A, Pituch H, Macovei IS, Jovanović M, Wiuff C, Schmid D, Olsen KE, Wilcox MH, Suetens C, Kuijper EJ, European Clostridium difficile Infection Surveillance Network (ECDIS-Net) on behalf of all participants (2016) Standardised surveillance of Clostridium difficile infection in European acute care hospitals: a pilot study, 2013. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. https://doi.org/10.2807/1560-7917.ES.2016.21.29.30293
  137. Viscidi R, Laughon BE, Yolken R, Bo-Linn P, Moench T, Ryder RW, Bartlett JG (1983) Serum antibody response to toxins A and B of Clostridium difficile. J Infect Dis 148:93–100PubMedCrossRefGoogle Scholar
  138. Voth DE, Ballard JD (2005) Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18:247–263. https://doi.org/10.1128/CMR.18.2.247-263.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Waligora AJ, Hennequin C, Mullany P, Bourlioux P, Collignon A, Karjalainen T (2001) Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect Immun 69:2144–2153. https://doi.org/10.1128/IAI.69.4.2144-2153.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wang H, Sun X, Zhang Y, Li S, Chen K, Shi L, Nie W, Kumar R, Tzipori S, Wang J, Savidge T, Feng H (2012) A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection. Infect Immun 80:2678–2688. https://doi.org/10.1128/IAI.00215-12PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wang B, Wang S, Rustandi RR, Wang F, Mensch CD, Hong L, Kristopeit A, Secore S, Dornadula G, Kanavage A, Heinrichs JH, Mach H, Blue JT, Thiriot DS (2015) Detecting and preventing reversion to toxicity for a formaldehyde-treated C. difficile toxin B mutant. Vaccine 33:252–259. https://doi.org/10.1016/j.vaccine.2014.06.032 PubMedCrossRefGoogle Scholar
  142. Warny M, Vaerman JP, Avesani V, Delmée M (1994) Human antibody response to Clostridium difficile toxin A in relation to clinical course of infection. Infect Immun 62:384–389PubMedPubMedCentralGoogle Scholar
  143. Wilcox MH, Gerding DN, Poxton IR, Kelly C, Nathan R, Birch T, Cornely OA, Rahav G, Bouza E, Lee C, Jenkin G, Jensen W, Kim Y-S, Yoshida J, Gabryelski L, Pedley A, Eves K, Tipping R, Guris D, Kartsonis N, Dorr M-B, Modify I and Modify II Investigators (2017) Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med 376:305–317. https://doi.org/10.1056/NEJMoa1602615 PubMedCrossRefGoogle Scholar
  144. Wright A, Drudy D, Kyne L, Brown K, Fairweather NF (2008) Immunoreactive cell wall proteins of Clostridium difficile identified by human sera. J Med Microbiol 57:750–756. https://doi.org/10.1099/jmm.0.47532-0 PubMedCrossRefGoogle Scholar
  145. Xiong N, Hu S (2015) Regulation of intestinal IgA responses. Cell Mol Life Sci CMLS 72:2645–2655. https://doi.org/10.1007/s00018-015-1892-4 CrossRefPubMedGoogle Scholar
  146. Yang Z, Schmidt D, Liu W, Li S, Shi L, Sheng J, Chen K, Yu H, Tremblay JM, Chen X, Piepenbrink KH, Sundberg EJ, Kelly CP, Bai G, Shoemaker CB, Feng H (2014) A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice. J Infect Dis 210:964–972. https://doi.org/10.1093/infdis/jiu196 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Yoshino Y, Kitazawa T, Ikeda M, Tatsuno K, Yanagimoto S, Okugawa S, Yotsuyanagi H, Ota Y (2013) Clostridium difficile flagellin stimulates tolllike receptor 5, and toxin B promotes flagellin-induced chemokine production via TLR5. Life Sci 92:211–217. https://doi.org/10.1016/j.lfs.2012.11.017 PubMedCrossRefGoogle Scholar
  148. Zhang L, Wang W, Wang S (2015) Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines 14:1509–1523. https://doi.org/10.1586/14760584.2015.1081067 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jean-François Bruxelle
    • 1
  • Séverine Péchiné
    • 1
  • Anne Collignon
    • 1
  1. 1.EA4043 Unité Bactéries Pathogènes et Santé (UBaPS)Univ. Paris-Sud, Université Paris-SaclayChâtenay-Malabry CedexFrance

Personalised recommendations