Probiotics for Prevention and Treatment of Clostridium difficile Infection

  • Lorena Valdés-Varela
  • Miguel Gueimonde
  • Patricia Ruas-Madiedo
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1050)

Abstract

Probiotics have been claimed as a valuable tool to restore the balance in the intestinal microbiota following a dysbiosis caused by, among other factors, antibiotic therapy. This perturbed environment could favor the overgrowth of Clostridium difficile and, in fact, the occurrence of C. difficile-associated infections (CDI) is being increasing in recent years. In spite of the high number of probiotics able to in vitro inhibit the growth and/or toxicity of this pathogen, its application for treatment or prevention of CDI is still scarce since there are not enough well-defined clinical studies supporting efficacy. Only a few strains, such as Lactobacillus rhamnosus GG and Saccharomyces boulardii have been studied in more extent. The increasing knowledge about the probiotic mechanisms of action against C. difficile, some of them reviewed here, makes promising the application of these live biotherapeutic agents against CDI. Nevertheless, more effort must be paid to standardize the clinical studied conducted to evaluate probiotic products, in combination with antibiotics, in order to select the best candidate for C. difficile infections.

Keywords

Probiotic C. difficile Clinical study Mechanism of action Antagonism 

Notes

Acknowledgements

The funds supporting this research topic in our group are given by the Spanish Ministry of Economy and Competiveness (current project AGL2015-64901-R) partially co-funded by FEDER (European Union) grants.

References

  1. Abt MC, McKenney PT, Pamer EG (2016) Clostridium difficile colitis: pathogenesis and host defense. Nat Rev Microbiol 14:609–620PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen SJ, Wareham K, Wang D et al (2013) Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 382:1249–1257PubMedCrossRefGoogle Scholar
  3. Ambalam P, Kondepudi KK, Balusupati P et al (2015) Prebiotic preferences of human lactobacilli strains in co-culture with bifidobacteria and antimicrobial activity against Clostridium difficile. J Appl Microbiol 119:1672–1682PubMedCrossRefGoogle Scholar
  4. Andersen KK, Strokappe NM, Hultberg A et al (2016) Neutralization of Clostridium difficile toxin B mediated by engineered lactobacilli that produce single-domain antibodies. Infect Immun 84:395–406PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arruda PHE, Madson DM, Ramirez A et al (2016) Bacterial probiotics as an aid in the control of Clostridium difficile disease in neonatal pigs. Can Vet J 57:183–188PubMedPubMedCentralGoogle Scholar
  6. Arvola T, Laiho K, Torkkeli S et al (1999) Prophylactic Lactobacillus GG reduces antibiotic-associated diarrhea in children with respiratory infections: a randomized study. Pediatrics 104:64CrossRefGoogle Scholar
  7. Auclair J, Frappier M, Millette M (2015) Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+): characterization, manufacture, mechanisms of action, and quality control of a specific probiotic combination for primary prevention of Clostridium difficile infection. Clin Infect Dis 60:S135–S143PubMedCrossRefGoogle Scholar
  8. Banerjee P, Merkel GJ, Bhunia AK (2009) Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. Gut Pathog 1:8PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barreau F, Hugot JP (2014) Intestinal barrier dysfunction triggered by invasive bacteria. Curr Opin Microbiol 17:91–98PubMedCrossRefGoogle Scholar
  10. Best EL, Freeman J, Wilcox MH (2012) Models for the study of Clostridium difficile infection. Gut Microbes 3:145–167PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bolla PA, Carasi P, Serradell MA et al (2013) Kefir-isolated Lactococcus lactis subsp. lactis inhibits the cytotoxic effect of Clostridium difficile in vitro. J Dairy Res 80:96–102PubMedCrossRefGoogle Scholar
  12. Boonma P, Spinler JK, Venable SF et al (2014) Lactobacillus rhamnosus L34 and Lactobacillus casei L39 suppress Clostridium difficile-induced IL-8 production by colonic epithelial cells. BMC Microbiol 14:177PubMedPubMedCentralCrossRefGoogle Scholar
  13. Can M, Besirbellioglu BA, Avci IY et al (2006) Prophylactic Saccharomyces boulardii in the prevention of antibiotic associated diarrhea: a prospective study. Med Sci Monit 12:19–22Google Scholar
  14. Carasi P, Trejo FM, Pérez PF et al (2012) Surface proteins from Lactobacillus kefir antagonize in vitro cytotoxic effect of Clostridium difficile toxins. Anaerobe 18:135–142PubMedCrossRefGoogle Scholar
  15. Carter GP, Rood JI, Lyras D (2012) The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol 20:21–29PubMedCrossRefGoogle Scholar
  16. Castagliuolo I, Lamont JT, Nikulasson ST (1996) Saccharomyces boulardii protease inhibits Clostridium difficile Toxin A effects in the rat ileum. Infect Immun 64:5225–5232PubMedPubMedCentralGoogle Scholar
  17. Castagliuolo I, Rieger MF, Valenick L et al (1999) Saccharomyces boulardii protease inhibits the effect of Clostridium difficile toxins A and B in human colonic mucosa. Infect Immun 67:302–307PubMedPubMedCentralGoogle Scholar
  18. Collado MC, Gueimonde M, Hernández M et al (2005) Adhesion of selected Bifidobacterium strains to human intestinal mucus and its role in enteropathogen exclusion. J Food Protect 68:2672–2678CrossRefGoogle Scholar
  19. Corr SC, Li Y, Riedel CU et al (2007) Bacteriocin production as a mechanism for the anti-infective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104:7617–7621PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cremonini F, Caro S, Nista EC et al (2002) Meta-analysis: the effects of probiotic administration on antibiotic associated diarrhoea. Aliment Pharmacol Ther 16:1461PubMedCrossRefGoogle Scholar
  21. D’Souza AL, Rajkumar C, Cooke J et al (2002) Probiotics in the prevention of antibiotic associated diarrhoea: meta-analysis. Br Med J 324:1361CrossRefGoogle Scholar
  22. Dicks LMT, Botha M, Loos B et al (2015) Adhesion of Lactobacillus reuteri strain Lr1 to equine epithelial cells and competitive exclusion of Clostridium difficile from the gastro-intestinal tract of horses. Ann Microbiol 65:1087–1096CrossRefGoogle Scholar
  23. Dietrich CG, Kottmann T, Alavi M (2014) Commercially available probiotic drinks containing Lactobacillus casei DN-114001 reduce antibiotic-associated diarrhea. World J Gastroenterol 20:15837–15844PubMedPubMedCentralCrossRefGoogle Scholar
  24. Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20–32PubMedCrossRefGoogle Scholar
  25. Ferreira CL, Grześkowiak Ł, Collado MC et al (2011) In vitro evaluation of Lactobacillus gasseri strains of infant origin on adhesion and aggregation of specific pathogens. J Food Prot 74:1482–1487PubMedCrossRefGoogle Scholar
  26. Forssten SD, Röytió H, Hibberd AA et al (2015) The effect of polydextrose and probiotic lactobacilli in a Clostridium difficile-infected human colonic model. Microb Ecol Health Dis 26:27988PubMedGoogle Scholar
  27. Fredua-Agyeman M, Stapleton P, Basit AW et al (2017) In vitro inhibition of Clostridium difficile by commercial probiotics: a microcalorimetric study. Int J Pharm 517:96–103PubMedCrossRefGoogle Scholar
  28. Gagnon M, Zihler Berner A, Chervet N et al (2013) Comparison of the Caco-2, HT29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J Microbiol Methods 94:274–279PubMedCrossRefGoogle Scholar
  29. Gao XW, Mubasher M, Fang CY et al (2010) Dose-response efficacy of a proprietary probiotic formula of Lactobacillus acidophilus CL1285 and Lactobacillus casei LBC80R for antibiotic associated diarrhea and Clostridium difficile-associated diarrhea prophylaxis in adults patients. Am J Gastroenterol 105:1636–1641PubMedCrossRefGoogle Scholar
  30. Gareau MG, Sherman PM, Walker WA (2010) Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroentol Hepatol 7:503–514CrossRefGoogle Scholar
  31. Gerding DN, JohnsonS RM et al (2014) Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microb 5:15–27CrossRefGoogle Scholar
  32. Goldenberg JZ, Ma SSY, Saxton JD et al (2013) Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev 5:CD006095Google Scholar
  33. Goldenberg JZ, Lytvyn L, Steurich J et al (2015) Probiotics for prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev 12:CD004827Google Scholar
  34. Golić N, Veljović K, Popović N et al (2017) In vitro and in vivo antagonistic activity of new probiotic culture against Clostridium difficile and Clostridium perfringens. BMC Microbiol 17:108PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hempel S, Newberry SJ, Maher AR et al (2012) Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA 307:1959–1969PubMedCrossRefGoogle Scholar
  36. Hickson M (2011) Probiotics in the prevention of antibiotic-associated diarrhea and Clostridium difficile infection. Ther Adv Gastroenterol 4:185–197CrossRefGoogle Scholar
  37. Hill C, Guarner F, Reid G et al (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514PubMedCrossRefGoogle Scholar
  38. Hopkins MJ, Macfarlane GT (2003) Nondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitro. Appl Environ Microbiol 69:1920–1927PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hussack G, Tanha J (2016) An update on antibody-based immunotherapies for Clostridium difficile infection. Clin Exp Gastroenterol 9:209–224PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hutton ML, Mackin KE, Chakravorty A et al (2014) Small animal models for the study of Clostridium difficile disease pathogenesis. FEMS Microbiol Lett 352:140–149PubMedCrossRefGoogle Scholar
  41. Jangi S, Lamont JT (2010) Asyntomatic colonization by Clostridium difficile in infants: implications for disease in later life. J Pediatr Gastroenterol Nutr 51:2–7PubMedCrossRefGoogle Scholar
  42. Johnston B, Supina A, Ospina M et al (2007) Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev 18:CD004827Google Scholar
  43. Kachrimanidou M, Sarmourli T, Skoura L et al (2016) Clostridium difficile infection: new insights into therapeutic options. Crit Rev Microbiol 42:773–779PubMedGoogle Scholar
  44. Kociolek LK, Gerding DN (2016) Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat Rev Gastroenterol Heptol 13:150–160CrossRefGoogle Scholar
  45. Kolling GL, Wu M, Warren CA et al (2012) Lactic acid production by Streptococcus thermophilus alters Clostridium difficile infection and in vitro toxin A production. Gut Microb 3:523–529CrossRefGoogle Scholar
  46. Kondepudi KK, Ambalam P, Karagin PH et al (2014) A novel multi-strain probiotic and synbiotic supplement for prevention of Clostridium difficile infection in a murine model. Microbiol Immunol 58:552–558PubMedCrossRefGoogle Scholar
  47. Koon HW, Su B, Xu C et al (2016) Probiotic Saccharomyces boulardii CNCM I-745 prevents outbreak-associated Clostridium difficile-associated cecal inflammation in hamsters. Am J Physiol Gastroenterol Liver Physiol 311:G610–G623CrossRefGoogle Scholar
  48. Kotowska M, Albrecht P, Szajewska H (2005) Saccharomyces boulardii in the prevention of antibiotic-associated diarrhea in children: a randomized double-blind placebo-controlled trial. Aliment Pharmacol Ther 21:583–590PubMedCrossRefGoogle Scholar
  49. Lau CSM, Chamberlaim RS (2016) Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med 9:27–37PubMedPubMedCentralGoogle Scholar
  50. Lawley TD, Walker AW (2013) Intestinal colonization resistance. Immunology 138:1–11PubMedCrossRefGoogle Scholar
  51. Le Lay C, Fernandez B, Hammami R et al (2015) On Lactococcus lactis UL719 competitivity and nisin (Nisaplin®) capacity to inhibit Clostridium difficile in a model of human colon. Front Microbiol 6:1020PubMedPubMedCentralGoogle Scholar
  52. Leal JR, Heitman SJ, Conly JM et al (2016) Cost-effectiveness analysis of the use of probiotics for the prevention of Clostridium difficile-associated diarrhea in a provincial health care system. Infect Cont Hosp Epidemiol 37:1079–1086CrossRefGoogle Scholar
  53. Lee JS, Chung MJ, Seo JG (2013) In vitro evaluation of antimicrobial activity of lactic acid bacteria against Clostridium difficile. Toxicol Res 29:99–106PubMedPubMedCentralCrossRefGoogle Scholar
  54. Leffler DA, Lamont JT (2015) Clostridium difficile infection. N Engl J Med 372:1539–1548PubMedCrossRefGoogle Scholar
  55. Mansour NM, Elkhatib WF, Aboshnad KM et al (2017) Inhibition of Clostridium difficile in mice using a mixture of potential probiotic strains Enterococcus faecalis NM815, E. faecalis NM915, and E. faecium NM1015: novel candidates to control C. difficile infection (CDI). Probiotics Antimicrob Prot. https://doi.org/10.1007/s12602-017-9285-7. [E-pub ahead of print]
  56. Martin J, Wilcox M (2016) New and emerging therapies for Clostridium difficile infection. Curr Opin Infect Dis 29:546–554PubMedCrossRefGoogle Scholar
  57. Mathur H, Rea MC, Cotter PD et al (2014) The potential for emerging therapeutic options for Clostridium difficile infection. Gut Microb 5:696–710CrossRefGoogle Scholar
  58. Maziade PJ, Pereira P, Goldstein EJC (2015) A decade of experience in primary prevention of Clostridium difficile infection at a community hospital using the probiotic combination Lactobacillus acidophilus CL1285, Lactobacilus casei LBC80R, and Lactobacillus rhamnosus CRL2 (Bio-K+). Clin Infect Dis 60(Suppl 2):S144–S147PubMedCrossRefGoogle Scholar
  59. McFarland LV (2006) Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol 101:812–822PubMedCrossRefGoogle Scholar
  60. McFarland LV (2015) Probiotics for the primary and secondary prevention of C. difficile infections. A meta-analysis and systematic review. Antibiotics 4:160–178PubMedPubMedCentralCrossRefGoogle Scholar
  61. McFarland LV (2016) Therapies on the horizon for Clostridium difficile infections. Expert Opin Investig Drugs 25:541–555PubMedCrossRefGoogle Scholar
  62. McFarland LV, Surawicz CM, Greenberg RN et al (1994) A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. J Am Med Assoc 271:1913CrossRefGoogle Scholar
  63. Moura I, Spigaglia P, Barbanti F et al (2013) Analysis of metronidazole susceptibility in different Clostridium difficile PCR ribotypes. J Antimicrob Chemother 68:362–365PubMedPubMedCentralCrossRefGoogle Scholar
  64. Na X, Kelly C (2011) Probiotics in Clostridium difficile infection. J Clin Gastroenterol 45:S154–S158PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ng SC, Hart AL, Kamm MA et al (2009) Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis 15:300–310PubMedCrossRefGoogle Scholar
  66. O’Horo JC, Jindai K, Kunzer B et al (2014) Treatment of recurrent Clostridium difficile infection: a systematic review. Infection 42:43–59PubMedCrossRefGoogle Scholar
  67. Ofosu A (2016) Clostridium difficile infection: a review of current and emerging therapies. Ann Gastroenterol 29:147–154PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ollech JE, Shen NT, Crawford CV et al (2016) Use of probiotics in prevention and treatment of patients with Clostridium difficile infection. Best Pract Res Clin Gastroenterol 30:111–118PubMedCrossRefGoogle Scholar
  69. Orrell KE, Zhanga Z, Sugiman-Marangosa SN et al (2017) Clostridium difficile toxins A and B: receptors, pores, and translocation into cells. Crit Rev Biochem Mol Biol 52:461–473PubMedCrossRefGoogle Scholar
  70. Ozaki E, Kato H, Kita H et al (2004) Clostridium difficile colonization in healthy adults: transient colonization and correlation with enterococal colonization. J Med Microbiol 53:167–172PubMedCrossRefGoogle Scholar
  71. Padua D, Pothoulakis C (2016) Novel approaches to treating Clostridium difficile-associated colitis. Expert Opin Investig Drugs 10:193–204Google Scholar
  72. Parkes GC, Sanderson JD, Whelan K (2009) The mechanisms and efficacy of probiotics in the prevention of Clostridium difficile-associated diarrhoea. Lancet Infect Dis 9:237–244PubMedCrossRefGoogle Scholar
  73. Rätsep M, Kõljalg S, Sepp E et al (2017) A combination of the probiotic and prebiotic product can prevent the germination of Clostridium difficile spores and infection. Anaerobe 47:94–103PubMedCrossRefGoogle Scholar
  74. Reid G, Younes JA, Van der Mei HC et al (2011) Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol 9:27–38PubMedCrossRefGoogle Scholar
  75. Ripert G, Racedo SM, Elie AM et al (2016) Secreted compounds of the probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins. Antimicrob Agents Chemother 60:3445–3454PubMedPubMedCentralCrossRefGoogle Scholar
  76. Rodriguez C, Taminiau B, Van Broeck J et al (2016) Clostridium difficile in food and animals: a comprehensive review. Adv Exp Med Biol 4:65–92CrossRefGoogle Scholar
  77. Ruas-Madiedo P, Gueimonde M, Margolles A et al (2006) Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot 69:2011–2015PubMedCrossRefGoogle Scholar
  78. Ruas-Madiedo P, Medrano M, Salazar N et al (2010) Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells. J Appl Microbiol 109:2079–2086PubMedCrossRefGoogle Scholar
  79. Rupnik M, Wilcox MH, Gerding DN (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7:526–536PubMedCrossRefGoogle Scholar
  80. Sampalis J, Psaradellis E, Ranpakakis E (2010) Efficacy of BIO K+ CL1285 in the reduction of antibiotic associated diarrhea- a placebo controlled double blind randomized, multi-centre study. Arch Med Sci 6:56–64PubMedPubMedCentralGoogle Scholar
  81. Sazawal S, Hiremath G, Dhingra U et al (2006) Efficacy of probiotics in prevention of acute diarrhoea. A meta-analysis of masked, randomized, placebo-controlled trials. Lancet Infect Dis 6:374–382PubMedCrossRefGoogle Scholar
  82. Schoster A, Kokotovic B, Permin A (2013) In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains. Anaerobe 20:36–41PubMedCrossRefGoogle Scholar
  83. Shen NT, Maw A, Tmanova LL et al (2017) Timely use of probiotics in hospitalized adults prevents Clostridium difficile infection: a systematic review with meta-regression analysis. Gastroenterology 52:1889–1900CrossRefGoogle Scholar
  84. Sinclair A, Xie X, Saab L et al (2016) Lactobacillus probiotics in the prevention of diarrhea associated with Clostridium difficile: a systematic review and bayesian hierarchical meta-analysis. CMAJ Open 4:E706–E718PubMedPubMedCentralCrossRefGoogle Scholar
  85. Spinler JK, Brown A, Ross CL et al (2016) Administration of probiotic kefir to mice with Clostridium difficile infection exacerbates disease. Anaerobe 40:54–57PubMedPubMedCentralCrossRefGoogle Scholar
  86. Starn ES, Hampe H, Cline T (2016) The cost-efficiency and care effectiveness of probiotic administration with antibiotics to prevent hospital-acquired Clostridium difficile infection. Qual Manag Health Care 25:238–243PubMedCrossRefGoogle Scholar
  87. Stier H, Bischoff SC (2016) Influence of Saccharomyces boulardii CNCM I-745 on the gut-associated immune system. Clin Exp Gastroenterol 9:269–279PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sun X, Wang H, Zhang Y et al (2011) Mouse relapse model of Clostridium difficile infection. Infect Immun 79:2856–2864PubMedPubMedCentralCrossRefGoogle Scholar
  89. Surawicz CM, McFarland LV, Greenberg RN et al (2000) The search for a better treatment for recurrent Clostridium difficile disease: use of high dose vancomycin combined with Saccharomyces boulardii. Clin Infect Dis 31:1012–1017PubMedCrossRefGoogle Scholar
  90. Szajewska H, Skorka A, Dylag M (2007a) Meta-analysis: Saccharomyces boulardii for treating acute diarrhoea in children. AP&T 25:257–264Google Scholar
  91. Szajewska H, Skorka A, Ruszczynski M et al (2007b) Meta-analysis: Lactobacillus GG for treating acute diarrhoea in children. AP&T 25:871–881Google Scholar
  92. Szajewska H, Canani RB, Guarino A et al (2016) Probiotics for the prevention of antibiotic-associated diarrhea in children. J Pediatr Gastroenterol Nutr 62:495–506PubMedCrossRefGoogle Scholar
  93. Tasteyre A, Barc MC, Karjalainen T et al (2002) Inhibition of in vitro cell adherence of Clostridium difficile by Saccharomyce boulardii. Microb Pathog 32:219–225PubMedCrossRefGoogle Scholar
  94. Tejero-Sariñena S, Barlow J, Costabile A et al (2013) Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe 24:60–65PubMedCrossRefGoogle Scholar
  95. Trejo FM, Minnaard J, Pereza PF et al (2006) Inhibition of Clostridium difficile growth and adhesion to enterocytes by Bifidobacterium supernatants. Anaerobe 12:186–193PubMedCrossRefGoogle Scholar
  96. Trejo FM, Pérez PF, De Antoni GL (2010) Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro. Antonie Van Leeuwenhoek 98:19–29PubMedCrossRefGoogle Scholar
  97. Trejo FM, De Antoni GL, Pérez PF (2013) Protective effect of bifidobacteria in an experimental model of Clostridium difficile associated colitis. J Dairy Res 80:263–269PubMedCrossRefGoogle Scholar
  98. Ünal CM, Steinert M (2016) Novel therapeutic strategies for Clostridium difficile infections. Expert Opin Investig Drugs 20:269–285Google Scholar
  99. Valdés L, Gueimonde M, Ruas-Madiedo P (2015) Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29. J Microbiol Method 119:66–73CrossRefGoogle Scholar
  100. Valdés-Varela L, Alonso-Guervos M, García-Suárez O et al (2016a) Selection of bifidobacteria and lactobacilli able to antagonise the cytotoxic effect of Clostridium difficile upon intestinal epithelial HT29 monolayer. Front Microbiol 7:577PubMedPubMedCentralGoogle Scholar
  101. Valdés-Varela L, Hernández-Barranco AM, Ruas-Madiedo P et al (2016b) Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front Microbiol 7:738PubMedPubMedCentralGoogle Scholar
  102. Vanderhoof J, Whitney D, Antonson D et al (1999) Lactobacillus GG in the prevention of antibiotic associated diarrhea in children. J Pediatr 135:564–568PubMedCrossRefGoogle Scholar
  103. Venema K, van den Abbeele P (2013) Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 27:115–126PubMedCrossRefGoogle Scholar
  104. Vernaya M, McAdam J, Hamptom MD (2017) Effectiveness of probiotics in reducing the incidence of Clostridium difficile-associated diarrhea in elderly patients: a systematic review. JBI Database Syst Rev Impl Rep 15:140–164CrossRefGoogle Scholar
  105. Voth DE, Ballard JD (2005) Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18:247–263PubMedPubMedCentralCrossRefGoogle Scholar
  106. Woodworth MH, Carpentieri C, Sitchenko KL et al (2017) Challenges in fecal donor selection and screening for fecal microbiota transplantation: a review. Gut Microb 8:225–237CrossRefGoogle Scholar
  107. Wullt M, Hagslatt ML, Odenholt I (2003) Lactobacillus plantarum 299v for the treatment of recurrent Clostridium difficile-associated diarrhoea: a double-blind, placebo-controlled trial. Scand J Infect Dis 35:365–367PubMedCrossRefGoogle Scholar
  108. Xi B, Yu N, Wang X et al (2008) The application of cell-based label-free technology in drug discovery. Biotechnol J 3:484–495PubMedCrossRefGoogle Scholar
  109. Yakob L, Riley TV, Paterson DL et al (2015) Mechanisms of hypervirulent Clostridium difficile ribotype 027 displacement of endemic strains: an epidemiological model. Sci Rep 5:12666PubMedPubMedCentralCrossRefGoogle Scholar
  110. Young VB (2017) Old and new models for studying host-microbe interactions in health and disease: C. difficile as an example. Am J Physiol Gastrointest Liver Physiol 312:G623–G627PubMedCrossRefGoogle Scholar
  111. Yu H, Chen K, Wu J et al (2015) Identification of toxemia in patients with Clostridium difficile infection. PLoS One 10:e0124235PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yun B, Oh S, Griffiths MW (2014) Lactobacillus acidophilus modulates the virulence of Clostridium difficile. J Dairy Sci 97:4745–4758PubMedCrossRefGoogle Scholar
  113. Zivkovic M, Hidalgo-Cantabrana C, Kojic M et al (2015) Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. Food Res Int 74:199–207PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Lorena Valdés-Varela
    • 1
  • Miguel Gueimonde
    • 1
  • Patricia Ruas-Madiedo
    • 1
  1. 1.Department of Microbiology and Biochemistry of Dairy ProductsInstituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC)VillaviciosaSpain

Personalised recommendations