Skip to main content

Rhythms, Retention and Protention: Philosophical Reflections on Geometrical Schemata for Biological Time

  • Chapter
  • First Online:

Part of the book series: Studies in Applied Philosophy, Epistemology and Rational Ethics ((SAPERE,volume 41))

Abstract

In this paper, following the technical approach to biological time, rhythms and retention/protention in Longo and Montévil (Perspectives on organisms: Biological time, symmetries and singularities. Springer, Berlin, 2014), we develop a philosophical frame for the proposed dimensions and mathematical structure of biological time, as a working example of “theory building”. We first introduce what “theory building” means to our perspective, in order to make explicit our theoretical tools and discuss the general epistemological issue. Then, through a conceptual articulation between physics and biology, we introduce protention (anticipation) and retention (memory), as proper biological observables. This theoretical articulation, which we consider at the core of moving from physical to biological theorizing, allows us to use some of the properties of these observables as principles around which it is possible to outline a proper geometrical schema for biological time. We then philosophically motivate the analysis of “time” as an operator that acts in biological dynamics in a constitutive way. In other words, space and time become specials concepts of order, actively involved in the theoretical organization of biology, in contrast to existing theories in physics where they appear as parameters. In this approach, we first consider the usual dimension of an irreversible physical time. We then add to it a dimension specific to the internal rhythms of organisms. We motivate this dimensional extension by the relative autonomy of biological rhythms with respect to physical time. This second dimension of time is “compactified” in a simple but rigorous mathematical sense. In short, as soon as there are life phenomena, their rhythms scan biological time. We will consider such a statement as a starting point for an original notion of biological inertia.

Articles (co-)authored by Longo are downloadable from http://www.di.ens.fr/users/longo/.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The process of relativisation of the Kantian a priori comes from the neo-Kantian School of Marburg and especially from Cassirer. With non-Euclidean geometries, a priori forms of intuition of space and time (which, for Kant, had the form of Euclidean geometry) could no longer constitute a scientific foundation for localisation. Moreover, after the formulation of the theory of relativity (restrained and general, both basing themselves on non-Euclidean spaces), the very concept of an object and its relationship to space was no longer immediate in intuition. More specifically, in classical mechanics, the dependency of the notion of “object” upon a complex of universal laws was founded on the laws of geometry. In relativity theory, instead, the localisation of an object takes place through operations that enable a transition from one reference system to another. It is the invariants of such transformations that may be deemed “objects”. We refer here to Cassirer (2004), for broad overviews of the possible modulations of the a priori we refer to Kauark-Leite (2012), Lassègue (2015).

  2. 2.

    The notion of group can be put into correspondence with the logical relationship of equivalence, and the notion of semi-group has the same form of ordered relation, (Bailly and Longo 2011, p. 163).

  3. 3.

    Note that H. Weyl, a major mathematician of relativity theory, while working on “Space, time and matter”, a fundamental book for that theory, stresses the limits of the physical description of time. He does so in Weyl (1918), in reference to the non-pointwise experience of phenomenal time, where the knowing, living subject plays a role.

References

  • Bailly, F., & Longo, G. (2008). Extended critical situation: The physical singularity of life phenomena. Journal of Biological Systems, 16(02), 309–336. https://doi.org/10.1142/S0218339008002514.

    Article  Google Scholar 

  • Bailly, F., & Longo, G. (2009). Biological organization and anti-entropy. Journal of Biological Systems, 17(01), 63–96. https://doi.org/10.1142/S0218339009002715.

    Article  Google Scholar 

  • Bailly, F., & Longo, G. (2011). Mathematics and the natural sciences: The physical singularity of life. London: Imperial College Press.

    Book  Google Scholar 

  • Bailly, F., Longo, G., & Montévil, M. (2011). A 2-dimensional geometry for biological time. Progress in Biophysics and Molecular Biology, 106(3), 474–484.

    Article  Google Scholar 

  • Bitbol, M. (1996). Schrödinger’s philosophy of quantum mechanics. Dordrecht, Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Bitbol, M. (1998). L’Aveuglante proximité du réel anti-réalisme et quasi-réalisme en physique. Paris: Flammarion.

    Google Scholar 

  • Bitbol, M. (2000). Le corps matériel et l’objet de la physique quantique. In F. Monnoyeur (Ed.), Qu’est-ce que la matière?: Regards scientifiques et philosophiques. Paris: Librairie générale française.

    Google Scholar 

  • Bitbol, M., Kerszberg, P., & Petitot, J. (2009). Constituting objectivity: Transcendental perspectives on modern physics. Dordrecht: Springer.

    Google Scholar 

  • Botzung, A., Denkova, E., & Manning, L. (2008). Experiencing past and future personal events: Functional neuroimaging evidence on the neural bases of mental time travel. Brain and Cognition, 66(2), 202–212. https://doi.org/10.1016/j.bandc.2007.07.011.

    Article  Google Scholar 

  • Buiatti, M., & Longo, G. (2013). Randomness and multi-level interactions in biology. Theory in Biosciences, 132(3), 139–158.

    Article  Google Scholar 

  • Cassirer, E. (2004). In W. C. Swabey & M. C. Swabey (Eds.), Substance and function & Einstein’s theory of relativity (p. 480). Dover: Courier Dover Publications.

    Google Scholar 

  • Chaline, J. (1999). Les horloges du vivant: Un nouveau stade de la théorie de l’évolution. Paris: Hachette.

    Google Scholar 

  • Chibbaro, S., Rondoni, L., & Vulpiani, A. (2014). Reductionism, emergence and levels of reality. Berlin: Springer.

    Book  Google Scholar 

  • Depraz, N. (2001). La conscience: Approches croisées: des classiques aux sciences cognitives. Paris: Armand Colin.

    Google Scholar 

  • Gallagher, S., & Varela, F. J. (2003). Redrawing the map and resetting the time: Phenomenology and the cognitive sciences. Canadian Journal of Philosophy, 29, 93–132.

    Article  Google Scholar 

  • Gould, S. J. (1989). Wonderful life: The Burgess shale and the nature of history. New York: W. W. Norton.

    Google Scholar 

  • Husserl, E. (1964). The phenomenology of internal time-consciousness. (J. S. Churchill, Trans.). The Hage: M. Nijhoff.

    Google Scholar 

  • Kant, I. (1995). Opus postumum. The Cambridge edition of the works of Immanuel Kant. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kant, I. (2000). Critique of pure reason. In P. Guyer & A. W. Wood (Eds.), The Cambridge edition of the works of Immanuel Kant. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kauark-Leite, P. (2012). Théorie quantique et philosophie transcendantale: Dialogues possibles. Paris: Hermann.

    Google Scholar 

  • Lassègue, J. (2015). Les formes symboliques, du transcendantal à la culture (collection M.A. thesis). Vrin, Paris.

    Google Scholar 

  • Longo, G., & Montévil, M. (2011a). From physics to biology by extending criticality and symmetry breakings. Progress in Biophysics and Molecular Biology, 106(2), 340–347. https://doi.org/10.1016/j.pbiomolbio.2011.03.005.

    Article  Google Scholar 

  • Longo, G., & Montévil, M. (2011b). Protention and retention in biological systems. Theory in biosciences = Theorie in den Biowissenschaften, 130(2), 107–117. https://doi.org/10.1007/s12064-010-0116-6.

    Article  Google Scholar 

  • Longo, G., & Montévil, M. (2012). Randomness increases order in biological evolution. In M. J. Dinneen, B. Khoussainov, & A. Nies (Eds.), Computations, physics and beyond’ (Vol. 7318, pp. 289–308). Auckland, New Zealand.

    Google Scholar 

  • Longo, G., & Montévil, M. (2014). Perspectives on organisms: Biological time, symmetries and singularities. Berlin: Springer.

    Book  Google Scholar 

  • Misslin, R. (2003). Une vie de cellule. Revue de Synthèse, 124(1), 205–221. https://doi.org/10.1007/BF02963405.

    Article  Google Scholar 

  • Nicolas, F. (2006). Quelle unité pour l’œuvre musicale? In A. Lautman, J. Lautman, & F. Zalamea (Eds.), Les mathématiques, les idées et le réel physique. Paris: Vrin.

    Google Scholar 

  • Perfetti, C. A., & Goldman, S. R. (1976). Discourse memory and reading comprehension skill. Journal of Verbal Learning and Verbal Behavior, 15(1), 33–42. https://doi.org/10.1016/S0022-5371(76)90004-9.

    Article  Google Scholar 

  • Perret, N., Sonnenschein, C., & Soto, A. M. (2017). Metaphysics: The proverbial elephant in the room. Organisms. Journal of Biological Sciences, 1(1), 1–5.

    Google Scholar 

  • Petitot, J., Varela, F. J., & Pachoud, B. (1999). In J. Petitot, F. J. Varela, & B. Pachoud (Eds.), Naturalizing phenomenology: Issues in contemporary phenomenology and cognitive. Stanford Calif.: Stanford university press.

    Google Scholar 

  • Soto, A., & Longo, G. (Eds.). (2016). From the century of the genome to the century of the organism: New theoretical approaches [Special issue]. Progress in Biophysics & Molecular Biology, 122.

    Google Scholar 

  • Vogeley, K., & Kupke, C. (2007). Disturbances of time consciousness from a phenomenological and a neuroscientific perspective. Schizophrenia Bulletin, 33(1), 157–165. https://doi.org/10.1093/schbul/sbl056.

    Article  Google Scholar 

  • Weyl, H. (1918). Das Kontinuum (Translated: The continuum, a critical examination of the foundation of analysis). NY: Dover (1987).

    Google Scholar 

  • Weyl, H. (1927). Philosophy of Mathematics and of Natural Sciences (English Trans.). Princeton, New Jersey: Princeton University Press (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Longo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longo, G., Perret, N. (2018). Rhythms, Retention and Protention: Philosophical Reflections on Geometrical Schemata for Biological Time. In: Danks, D., Ippoliti, E. (eds) Building Theories. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-72787-5_12

Download citation

Publish with us

Policies and ethics