Skip to main content

Rendezvous on a Line by Location-Aware Robots Despite the Presence of Byzantine Faults

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10718))

Abstract

A set of mobile robots is placed at points of an infinite line. The robots are equipped with GPS devices and they may communicate their positions on the line to a central authority. The collection contains an unknown subset of “spies”, i.e., byzantine robots, which are indistinguishable from the non-faulty ones. The set of the non-faulty robots need to rendezvous in the shortest possible time in order to perform some task, while the byzantine robots may try to delay their rendezvous for as long as possible. The problem facing a central authority is to determine trajectories for all robots so as to minimize the time until the non-faulty robots have rendezvoused. The trajectories must be determined without knowledge of which robots are faulty. Our goal is to minimize the competitive ratio between the time required to achieve the first rendezvous of the non-faulty robots and the time required for such a rendezvous to occur under the assumption that the faulty robots are known at the start. We provide a bounded competitive ratio algorithm, where the central authority is informed only of the set of initial robot positions, without knowing which ones or how many of them are faulty. When an upper bound on the number of byzantine robots is known to the central authority, we provide algorithms with better competitive ratios. In some instances we are able to show these algorithms are optimal.

J. Czyzowicz and E. Kranakis—Research supported in part by NSERC Discovery grant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33(3), 673–683 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpern, S.: Rendezvous search: a personal perspective. Oper. Res. 50(5), 772–795 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15763-9_28

    Chapter  Google Scholar 

  5. Bouzid, Z., Potop-Butucaru, M.G., Tixeuil, S.: Optimal byzantine-rezilient convergence in uni-dimensional robot network. Theor. Comput. Sci. 411(34–36), 3154–3168 (2010)

    Article  MATH  Google Scholar 

  6. Chuangpishit, H., Czyzowicz, J., Kranakis, E., Krizanc, D.: Rendezvous on a line by location-aware robots despite the presence of byzantine faults (2017). https://arxiv.org/pdf/1707.06776.pdf

  7. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 41(1), 1516–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Collins, A., Czyzowicz, J., Gąsieniec, L., Kosowski, A., Martin, R.: Synchronous rendezvous for location-aware agents. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 447–459. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0_42

    Chapter  Google Scholar 

  10. Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A.: Tell me where I am so I can meet you sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1_42

    Chapter  Google Scholar 

  11. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 343–354. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0_30

    Chapter  Google Scholar 

  12. Czyzowicz, J., Kosowski, A., Pelc, A.: Deterministic rendezvous of asynchronous bounded-memory agents in polygonal terrains. Theory Comput. Syst. 52(2), 179–199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp. 405–414 (2016)

    Google Scholar 

  14. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355(3), 315–326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 46–60. Springer, Heidelberg (2006). https://doi.org/10.1007/11864219_4

    Chapter  Google Scholar 

  16. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms (TALG) 11(1), 1 (2014)

    Article  MathSciNet  Google Scholar 

  18. Feinerman, O., Korman, A., Kutten, S., Rodeh, Y.: Fast rendezvous on a cycle by agents with different speeds. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 1–13. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45249-9_1

    Chapter  Google Scholar 

  19. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1), 147–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huus, E., Kranakis, E.: Rendezvous of many agents with different speeds in a cycle. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 195–209. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_14

    Chapter  Google Scholar 

  21. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoret. Comput. Sci. 390(1), 27–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kranakis, E., Krizanc, D., MacQuarrie, F., Shende, S.: Randomized rendezvous algorithms for agents on a ring with different speeds. In: Proceedings of the 2015 International Conference on Distributed Computing and Networking, ICDCN 2015, Goa, India, 4–7 January 2015, pp. 9:1–9:10 (2015)

    Google Scholar 

  24. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in the Ring: An Introduction. Synthesis Lectures on Distributed Computing Theory Series. Morgan & Claypool Publishers, San Rafael (2010)

    Google Scholar 

  25. Kranakis, E., Krizanc, D., Markou, E., Pagourtzis, A., Ramírez, F.: Different speeds suffice for rendezvous of two agents on arbitrary graphs. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 79–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_7

    Chapter  Google Scholar 

  26. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  27. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)

    MATH  Google Scholar 

  28. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  MATH  Google Scholar 

  29. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 333–349. Springer, Heidelberg (2006). https://doi.org/10.1007/11945529_24

    Chapter  Google Scholar 

  30. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0_163

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Kranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chuangpishit, H., Czyzowicz, J., Kranakis, E., Krizanc, D. (2017). Rendezvous on a Line by Location-Aware Robots Despite the Presence of Byzantine Faults. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M., Zhang, Y. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2017. Lecture Notes in Computer Science(), vol 10718. Springer, Cham. https://doi.org/10.1007/978-3-319-72751-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72751-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72750-9

  • Online ISBN: 978-3-319-72751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics