Skip to main content

Pathophysiology of Spasticity and Therapeutic Approach

  • Chapter
  • First Online:
Advanced Technologies for the Rehabilitation of Gait and Balance Disorders

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 19))

Abstract

It is well known that with a delay a lesion of the central nervous system (CNS) involving senso-motor networks in the brain or cervical or thoracic spinal cord will lead to an Upper Motor Neuron Syndrome (UMNS) caudal of the lesion. Clinically UMNS could be detected by increased resistance against passive movement during rest position (defined by Lance [22]), enhanced tendon reflexes [12, 28, 38], pyramidal signs and flexor-reflexes [12, 28], Co-contraction [12, 38], spastic dystonia [12, 38], and result in disturbed posture, slowed motor performance with decreased dexterity and coordination difficulties named spastic movement disorder (SMD, [13]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ada L, Vattanasilp W, O’Dwyer NJ, et al. Does spasticity contribute to walking dysfunction after stroke? J Neurol Neurosurg Psychiatry. 1998;64(5):628–35.

    Article  Google Scholar 

  2. Ansari NN, Naghdi S, Arab TK, Jalaie S. The interrater and intrarater reliability of the modified Ashworth scale in the assessment of muscle spasticity: limb and muscle group effect. NeuroRehabilitation. 2008;23(3):231–7.

    Google Scholar 

  3. Ashworth B. Preliminary trial of carisoprodol in multiple sclerosis. Practitioner. 1964;192:540–2.

    Google Scholar 

  4. Burke D, Wissel J, Donnan GA. Pathophysiology of spasticity in stroke, Neurology, 2013;80(3)(suppl 2):S20–6.

    Google Scholar 

  5. Caty GD, Detrembleur C, Bleyenheuft C, et al. Effect of simultaneous botulinum toxin injections into several muscles on impairment, activity, participation, and quality of life among stroke patients presenting with a stiff knee gait. Stroke. 2008;39(10):2803–8.

    Google Scholar 

  6. Cousins E, Ward A, Roffe C, et al. Does low-dose botulinum toxin help the recovery of arm function when given early after stroke? A phase II randomized controlled pilot study to estimate effect size. Clin Rehabil. 2010;24:501–13.

    Article  Google Scholar 

  7. Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6:725–33.

    Article  Google Scholar 

  8. Esquenazi A, Novak I, Sheean G, et al. International consensus statement for the use of botulinum toxin treatment in adults and children with neurological impairments–introduction. Eur J Neurol. 2010;17(Suppl 2):1–8.

    Article  Google Scholar 

  9. Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985;5(7):1688–703.

    Google Scholar 

  10. Fietzek UM, Kossmehl P, Schelosky L, et al. Early botulinum toxin treatment for spastic pes equinovarus—a randomized double-blind placebo-controlled study. Eur J Neurol. 2014;21(8):1089–95.

    Article  Google Scholar 

  11. Foley N, Pereira S, Salter K, et al. Treatment with botulinum toxin improves upper-extremity function post stroke: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2013;94:977–89.

    Article  Google Scholar 

  12. Gracies JM. Pathophysiology of impairment in patients with spasticity and use of stretch as a treatment of spastic hypertonia. Physical Med Rehabil Clin N Am. 2001;12:747–68.

    Google Scholar 

  13. Gracies JM. Pathophysiology of spastic paresis. I: paresis and soft tissue changes. Muscle Nerve. 2005;31(5):535–51.

    Article  Google Scholar 

  14. Gracies JM. Pathophysiology of spastic paresis. II: emergence of muscle overactivity. Muscle Nerve. 2005;31(5):552–71.

    Article  Google Scholar 

  15. Gracies J-M. Coefficients of impairment in deforming spastic paresis. Ann Phys Rehabil Med. 2015;58(3):173–8.

    Article  Google Scholar 

  16. Gracies JM, Brashear A, Jech R, et al. Safety and efficacy of abobotulinumtoxinA for hemiparesis in adults with upper limb spasticity after stroke or traumatic brain injury: a double-blind randomized controlled trail. Lancet Neurol. 2015;14:992–1001.

    Article  Google Scholar 

  17. Haugh AB, Pandyan AD. Johnson GR A systematic review of the Tardieu Scale for the measurement of spasticity. Disabil Research. 2006;28(15):899–907.

    Google Scholar 

  18. Hefter H, Jost WH, Reißig A, et al. Classification of posture in poststroke upper limb spasticity: a potential decision tool for botulinum toxin A treatment. Int J Rehabil Res. 2012;35:227–33.

    Google Scholar 

  19. Hesse S. Recovery of gait and other motor functions after stroke. Restaurative Neurol Neurosci. 22(2004):359–69.

    Google Scholar 

  20. Hesse S, Mach H, Fröhlich S, et al. An early botulinum toxin A treatment in subacute stroke patients may prevent a disabling finger flexor stiffness six months later: a randomized controlled trial. Clin Rehabil. 2012;26:237–45.

    Article  Google Scholar 

  21. Kwah LK, Harvey LA, Diong JH, et al. Half of the adults who present to hospital with stroke develop at least one contracture within six months: an observational study. J Physiother. 2012;58(1):41–7.

    Article  Google Scholar 

  22. Lance JW. Pathophysiology of spasticity and clinical experience with baclofen. 185–220. In: Feldman R, Young R, Koella W, editors. Spasticity: disordered motor control. Chicago: Yearbook Medical Publishers; 1980. p. 185–220.

    Google Scholar 

  23. Lance JW. The control of muscle tone, reflexes, and movement: Robert Wartenberg lecture. Neurology. 1980;30(12):1303–13.

    Article  Google Scholar 

  24. Lee KW, Kim SB, Lee JH, et al. Effect of upper extremity Robot-assisted exercise on spasticity in stroke patients. Ann Rehabil Med. 2016;40(6):961–71.

    Article  Google Scholar 

  25. Lieber RL, Steinman S, Barash IA, et al. Structural and functional changes in spastic skeletal muscle. Muscle Nerve. 2004;29(5):615–27.

    Article  Google Scholar 

  26. Liepert J. Therapie des spastischen Syndroms. Aus: Hans-Christoph Diener, Christian Weimar (Hrsg.) Leitlinien für Diagnostik und Therapie in der Neurologie. Herausgegeben von der Kommission “Leitlinien” der Deutschen Gesellschaft für Neurologie. Thieme Verlag, Stuttgart; 2012.

    Google Scholar 

  27. Malhotra S, Pandyan AD, Day CR, et al. Spasticity, an impairment that is poorly defined and poorly measured. Clin Rehabil. 2009;23(7):651–8.

    Article  Google Scholar 

  28. Mayer NH. Clinicophysiologic concepts of spasticity and motor dysfunction in adults with upper motoneuron lesion. Muscle Nerv. 1997;20(suppl 6):S1–13.

    Article  Google Scholar 

  29. Mills PB, Finlayson H, Sudol M, et al. Systematic review of adjunct therapies to improve outcomes following botulinum toxin injection for treatment of limb spasticity. Clinical Rehabil. 2016; 0269215515593783.

    Google Scholar 

  30. Olsson MC, Krüger M, Meyer L-H, et al. Fibre type-specific increase in passive muscle tension in spinal cord-injured subjects with spasticity. J Physiol. 2006;577(Pt 1):339–52.

    Article  Google Scholar 

  31. Olvey EL, Armstrong EP, Grizzle AJ. Contemporary pharmacologic treatments for spasticity of the upper limb after stroke: a systematic review. Clin Ther. 2010;32:2282–303.

    Article  Google Scholar 

  32. Pandyan AD, Gregoric M, Barnes MP, et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil. 2005;27:2–6.

    Article  Google Scholar 

  33. Platz T, Eickhof C, Nuyens G, Vuadens P. Clinical scales for the assessment of spasticity, associated phenomena, and function: a systematic review of the literature. Disabil Rehabil. 2005;27:7–18.

    Article  Google Scholar 

  34. Platz T, Vuadeus P, Eickhof C, et al. REPAS, a summary rating scale for resistance to passive movement: item selection, reliability and validity. Disabil Rehabil. 2008;30(1):44–53.

    Article  Google Scholar 

  35. Rosales R, Botulinum toxin therapy as an early intervention for post-stroke spasticity: beyond a functional viewpoint. J Neurol Sciences. 2017; 382:187–8.

    Google Scholar 

  36. Rosales RL, Kong KH, Goh KJ, et al. Botulinum toxin injection for hypertonicity of the upper extremity within 12 weeks after stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2012;26:812–21.

    Article  Google Scholar 

  37. Sheean G. The pathophysiology of spasticity, Eur J Neurol. 2002;9(s1)(suppl 1):3–9, 53–61.

    Google Scholar 

  38. Sheean G. Botulinum toxin treatment of adult spasticity. Expert Rev Neurotherapeutics. 2003;3, 773–85.

    Google Scholar 

  39. Sherwood AM, Mc Kay WB, Dimitrijevic MR. Motor control after spinal cord injury: assessment using surface EMG. Muscle Nerve. 1996;19(8):966–79.

    Article  Google Scholar 

  40. Simpson DM, Gracies JM, Graham HK, et al. Assessment: Botulinum neurotoxin for the treatment of spasticity (an evidence-based review): report of the therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2008;70:1691–8.

    Article  Google Scholar 

  41. Simpson DM, Gracies JM, Yablon SA, et al. BoNT/TZD Study Team: Botulinum neurotoxin versus tizanidine in upper limb spasticity: a placebo-controlled study. J Neurol Neurosurg Psychiatry. 2009;80:380–5.

    Article  Google Scholar 

  42. Simpson DM, Hallett M, Ashman EJ, et al. Practice guideline update summary: botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2016;86(19):1818–26.

    Article  Google Scholar 

  43. Thilmann AF, Fellows SJ, Gams E. The mechanism of spastic muscle tone. Variation in reflex gain over the time course of spasticity. Brain. 1991;14:233–44.

    Google Scholar 

  44. Turner-Stokes L, Ward A. Botulinum toxin in the management of spasticity in adults. Clin Med. 2002;2:128–30.

    Article  Google Scholar 

  45. Turner-Stokes L. Goal attainment scaling (GAS) in rehabilitation: a practical guide. Clin Rehabil. 2009;23:362–70.

    Article  Google Scholar 

  46. Turner-Stokes L, Williams H, Johnson J. Goal attainment scaling: does it provide added value as a person-centred measure for evaluation of outcome in neurorehabilitation following acquired brain injury? J Rehabil Med. 2009;41:528–35.

    Article  Google Scholar 

  47. Vinti M, Couillandre A, Hausselle J, et al. Influence of effort intensity and gastrocnemius stretch on co-contraction and torque production in the healthy and paretic ankle. Clin Neurophysiol. 2013;124(3):528–35.

    Article  Google Scholar 

  48. Ward AB, Wissel J, Borg J, et al. Functional goal achievement in post-stroke spasticity patients: the BOTOX(R) Economic Spasticity Trial (BEST). J Rehabil Med. 2014;46:504–13.

    Article  Google Scholar 

  49. Winter T, Wissel J. Behandlung der Spastizität nach Schlaganfall. Konsultationsfassung der DGNR-Leitlinie. Neurologie und Rehabilitation. 2013;19:285–309.

    Google Scholar 

  50. Wissel J, Ward AB, Erztgaard P, et al. European consensus table on the use of botulinum toxin type A in adult spasticity. J Rehabil Med. 2009;41:13–25.

    Article  Google Scholar 

  51. Wissel J, Manack A, Brainin M. Toward an epidemiology of poststroke spasticity. Neurology. 2013;80(Suppl 2):S13–9.

    Article  Google Scholar 

  52. Wissel J, Ganapathy V, Ward AB, et al. OnabotulinumtoxinA improves pain in patients with post-stroke spasticity: findings from a randomized, double-blind. Placebo-controlled Trial. J Pain Sympt Manag. 2016;52(1):17–26.

    Article  Google Scholar 

  53. Wissel J, Djamel Bensmail D, Ferreira JJ et al. Safety and efficacy of IncobotulinumtoxinA doses up to 800 U in limb spasticity: the TOWER study. Neurology. 2017.

    Google Scholar 

  54. Yanagisawa N, Shindo M, Morita H. Spinal mechanisms of spasticity. Electroencephalogr Clin Neurophysiol Suppl. 1999;50:190–4.

    Google Scholar 

  55. Zorowitz RD, Gillard PJ, Brainin M. Poststroke spasticity: sequelae and burden on stroke survivors and caregivers, Neurology, 2013;80(3)(suppl 2):S45–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Wissel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wissel, J. (2018). Pathophysiology of Spasticity and Therapeutic Approach. In: Sandrini, G., Homberg, V., Saltuari, L., Smania, N., Pedrocchi, A. (eds) Advanced Technologies for the Rehabilitation of Gait and Balance Disorders. Biosystems & Biorobotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-72736-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72736-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72735-6

  • Online ISBN: 978-3-319-72736-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics